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Gauge invariant Green’s functions

Gauge invariant Green’s functions are the natural ingredients to be
used to investigate the physical properties of observables in gauge
theories. Need appropriate treatment with Wilson loops.
For quarks, in the fundamental representation of SU(Nc), the gauge
invariant two-point Green’s function is defined as

Sαβ(x, x
′;Cx′x) = −

1

Nc

〈ψβ(x
′)U(Cx′x;x

′, x)ψα(x)〉,

where U is a path-ordered gluon field phase factor along a line Cx′x

joining a point x to a point x′:

U(Cx′x;x
′, x) = Pe

−ig

∫ x′

x

dzµAµ(z)
.
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Green’s functions with polygonal lines

Green’s functions with paths along polygonal lines are of particular
interest. They can be decomposed into the succession of straight line
segments. Straight line segments have Lorentz invariant forms. Easy
classification of polygonal lines according to the number of segments.
For polygonal lines with n sides and n− 1 junction points
y1, y2, . . .,yn−1 between the segments, we define:

S(n)(x, x
′
; yn−1, . . . , y1) = −

1

Nc

〈ψ(x
′
)U(x

′
, yn−1) . . . U(y1, x)ψ(x)〉,

where each U is along a straight line segment.

For one straight line, one has:

S(1)(x, x
′) ≡ S(x, x′) = −

1

Nc

〈ψ(x′)U(x′, x)ψ(x)〉.
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Quark propagator in the external gluon field

A two-step quantization. One first integrates with respect to the quark
fields. This produces in various terms the quark propagator in the
presence of the gluon field. Then one integrates with respect to the
gluon field through Wilson loops.

We use for the quark propagator in the extenal gluon field, S(A),
a representation which involves phase factors along straight lines
together with the full quark Green’s function. Generalization of a
representation introduced by Eichten and Feinberg, 1981, for heavy
quarks. S(A) is expanded around the following gauge covariant
quantity:

S(x, x′)
[
U(x, x′)

]a
b
.

[S(x, x′) is the gauge invariant Green’s function along one straight line segment.]
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Integrodifferential equation

Using then the quark equations of motion and the functional relations
between Green’s functions, one establishes the following integrodiffe-
rential equation for the Green’s function S(x, x′):

(iγ.∂(x) −m)S(x, x′
) = iδ4(x− x′

) + iγµ
{
K2µ(x

′, x, y1)S(2)(y1, x
′
;x)

+

∞∑

n=3

Knµ(x
′
, x, y1, . . . , yn−1)S(n)(yn−1, x

′
; x, y1, . . . , yn−2)

}
,

where the kernel Kn contains globally n derivatives of Wilson loops
with a (n+ 1)-sided polygonal contour and also the Green’s function
S and its derivative.

The Green’s functions S(n) themselves are related to the simplest
Green’s function S with functional relations.
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Two-dimensional QCD

Many simplifications in two-dimensional QCD at large Nc. In two
dimensions, Wilson loop averages are exponential functionals of the
areas of the surfaces enclosed by the contours. At large Nc, crossed
diagrams and quark loop contributions disappear. (’t Hooft, 1974.)

Equation of S with the lowest-order kernel becomes an exact
equation. In two dimensions, the second-order derivative of the
logarithm of the Wilson loop average is a delta-function.

(iγ.∂ −m)S(x) = iδ2(x) − σγµ(gµαgνβ − gµβgνα)x
νxβ

×
[ ∫ 1

0

dλλ2S((1 − λ)x)γαS(λx) +

∫ ∞

1

dξS((1 − ξ)x)γαS(ξx)
]
.
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S(p) = γ.pF1(p
2) + F0(p

2).

S(x) =
1

2π

(iγ.x
r
F̃1(r) + F̃0(r)

)
, r =

√
−x2.

One obtains two coupled equations. Their resolution proceeds
through several steps, based mainly on the spectral representation and
the related analyticity properties.

The equations can be solved explicitly.
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The covariant functions F1(p
2) and F0(p

2) are:

F1(p
2
) = −i

π

2σ

∞∑

n=1

bn
1

(M2
n − p2)3/2

,

F0(p
2
) = i

π

2σ

∞∑

n=1

(−1)
nbn

Mn

(M2
n − p2)3/2

.

The threshold singularities or branch points M2
1 , M

2
2 , . . . , M

2
n, . . . are labelled

with increasing values with respect to the index n; in particularM1 > m.

For large n:

M2
n ≃ σπn, bn ≃

σ2

Mn

, for σπn ≫ m2.

In x−space (r =
√

−x2):

F̃1(r) =
π

2σ

∞∑

n=1

bne
−Mnr, F̃0(r) =

π

2σ

∞∑

n=1

(−1)
n+1bne

−Mnr.
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Asymptotic behaviors:

F1(p
2) =

|p2|→∞

i

p2
,

F0(p
2) =

|p2|→∞

im

p2
, m 6= 0,

F0(p
2) =

|p2|→∞

2iσ

Nc

〈ψψ〉

(p2)2
, m = 0.
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Conclusion

1) The spectral functions are infrared finite and lie on the positive real
axis of p2. No singularities in the complex plane or on the negative real
axis have been found. =⇒ Quarks contribute with positive energies.

2) The singularities are represented by an infinite number of
threshold type singularities, characterized by positive masses Mn

(n = 1, 2, . . .). The corresponding singularities are stronger than
simple poles and this feature might prevent observability of quarks as
free particles.

3) The threshold masses Mn represent dynamically generated
masses and maintain the scalar part of the Green’s function at a
nonzero value.
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