

Anomalous like-sign dimuon charge asymmetry

G.Borissov

Lancaster University, UK representing the DØ collaboration

Last year result

• DØ Collaboration reported last year the evidence of anomalous like-sign dimuon charge asymmetry using 6.1 fb⁻¹ of data

$$A_{sl}^{b} \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

 $-N_b^{++}, N_b^{--}$ – number of events with two *b* hadrons decaying semileptonically and producing two muons of the same charge

$$A_{sl}^b = (-0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)})\%$$

$$A_{sl}^b(SM) = (-0.023^{+0.005}_{-0.006})\%$$

• Differs from SM prediction by 3.2σ

• Result can also be presented in terms of semileptonic charge asymmetries of B^0 and B^0 mesons: a^d_{sl} and a^s_{sl}

Main features of measurement

• Measure <u>raw</u> like-sign dimuon charge asymmetry A and <u>raw</u> inclusive muon charge asymmetry a:

$$A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$a \equiv \frac{n^{+} - n^{-}}{n^{+} + n^{-}}$$

$$a \equiv \frac{n^+ - n^-}{n^+ + n^-}$$

- $-N^{++}$, N^{--} the number of events with two like-sign dimuons
- $-n^+$, n^- the number of muons with given charge
- Background (i.e., non-CP violating charge asymmetry, mainly produced by $\pi \rightarrow \mu$ and $K \rightarrow \mu$ decays) is measured directly in data
- Raw asymmetry a is determined mainly by the background contribution and is used to constraint the background and reduce systematic uncertainties
- Raw asymmetry A contains both the background and possible signal contribution and is used to measure A^{b}_{sl}

Updated measurement

- In this updated measurement:
 - Increased statistics $6.1 \text{ fb}^{-1} \rightarrow 9.0 \text{ fb}^{-1}$
 - Improved muon selection
 - 13% increase of statistics for the same integrated luminosity
 - 20% reduction of background from K→μ, π→μ decays
 - Improved analysis technique
 - Study dependence of asymmetry on muon impact parameter

Cut on muon $|p_z|$ changed from 6.4 to 5.4 GeV (shown as a dashed lines). Smallest muon momentum required for detection by the muon system (solid line).

New result

• We get for 9.0 fb⁻¹:

$$A_{sl}^{b} = (-0.787 \pm 0.172 \text{ (stat)} \pm 0.093 \text{ (syst)})\%$$

- Consistent with our previous measurement with 6.1 fb⁻¹
- Deviates from the SM prediction by 3.9σ

• Asymmetry A^b_{sl} is a linear combination of a^d_{sl} and a^s_{sl} – semileptonic charge asymmetries of B^0 and B^0_s

$$A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$$

- Coefficients C_d and C_s depend on mean mixing probability and the production fractions of B^0 and B^0_s mesons, respectively
- We use the values of B^0 and B^0_s fractions measured at LEP and averaged by HFAG
 - Measurements of production fractions at LEP are consistent with the values obtained at LHCb

$$C_d = 0.594 \pm 0.022$$

 $C_s = 0.406 \pm 0.022$

- New constraint in a^d_{sl} versus a^s_{sl} plane
- Result is consistent with other measurements of a_{sl}^d and a_{sl}^s

Closure test

- The raw inclusive muon charge asymmetry a is mainly determined by the background asymmetry a_{bkg}
- The contribution of A^b_{sl} in a is suppressed by factor $k = 0.031 \pm 0.003$
- We measure a_{bkg} in data, and we can verify how does it describe the observed raw asymmetry a
- We compare a and a_{bkg} as a function of muon p_T
- We get $\chi^2/\text{dof} = 0.8/6$ for the difference between these two distributions

Excellent agreement between the expected and observed values of a, including a p_T dependence

Dependence on muon impact parameter

- Muons from $\pi \rightarrow \mu$ and $K \rightarrow \mu$ have small impact parameter (IP)
 - When the decay is outside the tracking volume
 - Hadrons mainly come from primary interaction

- To test the origin of dimuon charge asymmetry we perform two complimentary measurements requiring
 - IP > 120 μ m for both muons
 - IP \leq 120 μ m for both muons

• The contributions of a^d_{sl} and a^s_{sl} in A^b_{sl} changes significantly when we select muons with IP above or below given threshold:

for IP > 120
$$\mu$$
m $A_{sl}^b = (0.728 \pm 0.018)a_{sl}^d + (0.272 \pm 0.018)a_{sl}^s$
for IP < 120 μ m $A_{sl}^b = (0.397 \pm 0.022)a_{sl}^d + (0.603 \pm 0.022)a_{sl}^s$

• These contributions are determined by the mean mixing probability of B^0 and B^0_s in the selected sample

- Mean mixing probability of B^0 increases in the subsample of events with IP > 120 μ m
 - Period of B^0 oscillation $2\pi/\Delta M_d$ is much larger than its lifetime, therefore muons with small impact parameter (IP < 120 μm) are dominantly produced by non-oscillating decays of B^0
 - Selecting events with IP>120 μ m we increase the fraction of oscillating B^0
 - Fraction of oscillating B_s^0 mesons does not change for IP>120 μm because of small period of B_s^0 oscillation

oscillating decays of B^{θ} and B^{θ}_{s}

Results with IP cuts

• We obtain:

for IP > 120
$$\mu$$
m $A_{sl}^b = (-0.579 \pm 0.210 \pm 0.094)\%$
for IP < 120 μ m $A_{sl}^b = (-1.14 \pm 0.37 \pm 0.32)\%$

• From these results we get the separate values of a^d_{sl} and a^s_{sl} :

$$a_{sl}^d = (-0.12 \pm 0.52)\%$$

 $a_{sl}^s = (-1.81 \pm 1.06)\%$

Conclusions

New measurement of dimuon charge asymmetry is performed

$$A_{sl}^b = (-0.787 \pm 0.172 \text{ (stat)} \pm 0.093 \text{ (syst)})\%$$

- This result deviates from the SM prediction by 3.9σ
- Dependence of charge asymmetry on muon impact parameter tested

for IP > 120
$$\mu$$
m $A_{sl}^b = (-0.579 \pm 0.210 \pm 0.094)\%$
for IP < 120 μ m $A_{sl}^b = (-1.14 \pm 0.37 \pm 0.32)\%$

• From IP study we obtain the measurement of a^d_{sl} and a^s_{sl} :

$$a_{sl}^d = (-0.12 \pm 0.52)\%$$
 $a_{sl}^s = (-1.81 \pm 1.06)\%$

• Result is consistent with the hypothesis that the dimuon charge asymmetry is produced in semileptonic B decays

Backup slides

Improved analysis technique

- Main background comes from K→µ decays
- The most important quantity is $R_K = F_K / f_K$ ratio of the fractions of $K \rightarrow \mu$ in the like-sign dimuon and inclusive muon samples
- Previously determined by measuring production of $K^{*0} \rightarrow K^{+}\pi^{-}$ decays with $K \rightarrow \mu$ in the like-sign dimuon and inclusive muon samples
- Perform a complementary measurement using the production

of
$$K_S \rightarrow \pi^+ \pi^-$$
 with $\pi \rightarrow \mu$

Results in both channels are consistent

$$\Delta R_K = 0.01 \pm 0.05$$

• Important confirmation of the validity of F_K/f_K measurement

21/07/2011 G. Borisso

Difference between R_K values measured using K^{*0} and K_S events

Consistency checks

- Repeat closure test in bins of $|\eta|$
 - $\chi^2/dof = 2.8/4$

- Dependence of the dimuon asymmetry on the dimuon mass
 - Good consistency of predicted and observed asymmetry for measured A^b_{sl}
 - Significant disagreement for A^b_{sl}=A^b_{sl}(SM)

