Observation of $h_b(nP)$ and $Z_{\rm b}$'s states at $\Upsilon(5S)$ RFI I

arXiv:1103.3419, arXiv:1105.4583

Jean Wicht (KEK) **EPS 2011** July 22nd 2011

And to bottomonia (Υ(nS)ππ, etc...)

Does not agree well with the conventional $\Upsilon(10860)$ line shape

1) $Y_{_b}$ particle: analog to Y(4260) that has anomalously large $\Gamma(J/\psi\pi\pi)$

- 2) Rescattering of $\Upsilon(5S) \rightarrow BB\pi\pi \rightarrow \Upsilon(nS)\pi\pi$
- 3) something else?

CLEO observed $e^+e^- \rightarrow h_c \pi^+\pi^-$

•

• h_c production cross-section seems to be **enhanced near Y(4260)**

• Do we have more chance of seeing h_{h} at $\Upsilon(5S)$ if it is in fact Y_{h} ?

J. Wicht: $h_b(nP)$ and Z_b 's at $\Upsilon(5S)$

RFI I

984

9.86

9.88

9.9

9.92

9 94

9.98

J. Wicht: $h_b(nP)$ and Z_b 's at $\Upsilon(5S)$

RFI I

<u>Υ</u>(³2D)

<u>Υ(</u>³1D)

(1,2,3)--

2 M(B)

 $\pi\pi$

family

Analysis procedure

- Similar to CLEO's $h_{_{\rm C}}$ analysis: missing mass (MM) to $\pi^+\pi^-$ system
 - Implicit reconstruction of $\boldsymbol{h}_{_{b}}$ et al. (X) thanks to $e^{+}e^{-}$ annihilation

-
$$e^+e^- \rightarrow \Upsilon(5S) \rightarrow X \pi^+\pi^-$$

$$MM(\pi^+\pi^-) \equiv M_X = \sqrt{(P_{\Upsilon(5S)} - P_{\pi^+\pi^-})^2}$$

- $P_{\gamma(5S)}$: CM-energy and boost (accelerator information)
- P_{n+n-} : we detect and measure
- Selection is simple
 - Pions with opposite charges
 - tracks originating from IP region and particle identification
 - Continuum ($e^+e^- \rightarrow q\overline{q}$) suppression with event shape

Fit procedure

7

- Three independent fit are performed to MM distribution
 - signals and reflections
 - calibrated with exclusive $\Upsilon(5S) \to \Upsilon(nS) \; [\to \mu^+ \mu^-] \; \pi^+ \pi^- \, decays$
 - combinatorial background: order of polynomial: max of C.L.

5 MeV/c ²	40000	Prelimina	ary	Y(2S)	1 N N
Events / E	30000	Y(1S)		h _b (2P	50
	20000				Y(3S)
	10000	і — — — — — — — — — — — — — — — — — — —	ովել ու ու դե եսուելու գելել		
	0	9.4	9.6 9.8		
			Yield $[10^3]$	$Mass [MeV/c^2]$	$M(\pi \pi)$, Gev/c Significance
_		$\Upsilon(1S)$	$105.2 \pm 5.8 \pm 3.0$	$9459.42 \pm 0.53 \pm 1.02$	2 18.2
	j	$h_b(1P)$	$50.4 \pm 7.8^{+4.5}_{-9.1}$	$9898.25 \pm 1.06^{+1.03}_{-1.07}$	5.5
	$\Upsilon(3S)$	$\Sigma) ightarrow \Upsilon(1S)$	55 ± 19	9973.01	2.9
		$\Upsilon(2S)$	$143.4\pm8.7\pm6.8$	$10022.25 \pm 0.41 \pm 1.0$	1 16.6
		$\Upsilon(1D)$	22.1 ± 7.8	10166.2 ± 2.4	2.4
	Ì	$h_b(\overline{2P)}$	$84\pm7^{+23}_{-10}$	$10259.76 \pm 0.64 ^{+1.43}_{-1.03}$	11.2
	$\Upsilon(2S)$	$\Sigma \longrightarrow \Upsilon(1S)$	$151.6 \pm 9.7^{+9.0}_{-20.0}$	$10304.57 \pm 0.61 \pm 1.0$	3 15.7
_		$\Upsilon(3S)$	$44.9\pm5.1\pm5.1$	$10356.56 \pm 0.87 \pm 1.0$	6 8.5

h_b(nP) results

- Could the observed states be $\chi_{_{b1}}(nP)?$ No
 - Measured masses are ~3 σ off compared to $\chi_{\rm b1}(nP)$
 - $\Upsilon(5S) \rightarrow \chi_{b1}(nP)\pi^{+}\pi^{-}$ violates isospin (strong interaction)
- Mass are in very good agreement with CoG of $\chi_{\rm b}$ states
 - $h_{b}(1P): \Delta M = 1.62 \pm 1.52 \text{ MeV/c}^{2}$
 - $h_{b}(2P): \Delta M = 0.48 \pm 1.57 \text{ MeV/c}^{2}$
- Ratio of production rates

$$\frac{\Gamma(\Upsilon(5S) \to h_b(nP)\pi^+\pi^-)}{\Gamma(\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-)} = \begin{cases} 0.407 \pm 0.079^{+0.043}_{-0.076} & \text{for } h_b(1P) \\ 0.78 \pm 0.09^{+0.22}_{-0.10} & \text{for } h_b(2P) \end{cases}$$

• Decays to h_b should be suppressed due to spin-flip $S(h_b(nP))=0$ - $\Upsilon(5S) \rightarrow h_b(nP) \pi^+\pi^-$ decays seem exotic! $S(\Upsilon(nS))=1$

J. Wicht: $h_b(nP)$ and Z_b 's at $\Upsilon(5S)$

Consistent with hyperfine interaction

Using all our data: 711 fb⁻¹ (ie six times more data than at $\Upsilon(5S)$)

Source of $h_{b}(1P)$

Inspect the mass of $h_{_b}\pi^{\pm}$: look at the missing mass of a single pion $M(h_{_b}\pi^+){\equiv}MM(\pi^-)$

Source of $h_{\rm h}(2P)$

For MM($\pi^+\pi^-$) ~ M(h_b(2P)), the allowed phase space is smaller but two structures can also be seen

Resonances parameters **agree well** between $h_b(1P)$ and $h_b(2P)$ **NR~0**: almost all $h_b(nP)$ are produced through $\Upsilon(5S) \rightarrow Z_b^{\pm} \pi^{\mp} \rightarrow h_b \pi^{+} \pi^{-}$

Select $\Upsilon(5S){\rightarrow}\Upsilon(nS)[{\rightarrow}\mu^+\mu^-]~\pi^+\pi^-$ exclusive decays

Perform Dalitz plot analysis!

(C) Dalitz plots and fit model

Exclude region with large bkg from photon conversions

$$egin{aligned} S(s_1,s_2) &= |A_{Z_{b1}} + A_{Z_{b2}} + A_{ ext{NR}} + A_{f_0(980)} + A_{f_2(1270)}|^2 \ s_i &= M_{\pi_i \Upsilon}^2 & ext{Flatté (from our B^+ o K^+ \pi^+ \pi^- o analysis)} & ext{D-wave BW} \ (ext{PDG}) \ A_{Z_{bk}} &= a_k e^{i \phi_k} \left(rac{\Gamma_k}{M_k^2 - s_1 - i M_k \Gamma_k} + rac{\Gamma_k}{M_k^2 - s_2 - i M_k \Gamma_k}
ight) \ A_{ ext{NR}} &= c_1 + c_2 M_{\pi\pi}^2 & ext{A. Voloshin, PRD74:054022, 2006} \ ext{Prog. Part. Nucl. Phys. 61:455, 2008} \end{aligned}$$

Results: $\Upsilon(3S)\pi^+\pi^-$

$(\mathbf{E}) \mathbf{Z}_{b}$'s parameters summary

	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$h_b(1P)\pi^+\pi^-$	$h_b(2P)\pi^+\pi^-$
$M_{Z_{b1}}~[{ m MeV/c^2}]$	$10609 \pm 3 \pm 2$	$10616 \pm 2^{+3}_{-4}$	$10608 \pm 2^{+5}_{-2}$	$10605.1 \pm 2.2^{+3.0}_{-1.0}$	$10596\pm7^{+5}_{-2}$
$\Gamma_{Z_{b1}} [{ m MeV}]$	$22.9\pm7.3\pm2$	$21.4 \pm 4^{+2}_{-3}$	$12.2\pm1.7\pm4$	$11.4\substack{+4.5+2.1\\-3.9-1.2}$	$16\substack{+16+13\\-10-4}$
$M_{Z_{b2}} \; [{ m MeV/c^2}]$	$10660\pm 6\pm 2$	$10653\pm2\pm2$	$10652\pm2\pm2$	$10654.5 \pm 2.5 \pm {}^{+1.0}_{-1.9}$	$10651\pm4\pm2$
$\Gamma_{Z_{b2}} [{ m MeV}]$	$12\pm10\pm3$	$16.4 \pm 3.6^{+4}_{-6}$	$10.9\pm2.6^{+4}_{-2}$	$20.9^{+5.4+2.1}_{-4.7-5.7}$	$12^{+11+8}_{-9\ -2}$
Rel. ampl.	$0.59 \pm 0.19^{+0.09}_{-0.03}$	$0.91\pm0.11^{+0.04}_{-0.03}$	$0.73 \pm 0.10^{+0.15}_{-0.05}$	$1.8^{+1.0+0.1}_{-0.7-0.5}$	$1.3\substack{+3.1+0.4\\-1.1-0.7}$
Rel. phase [°]	$53\pm 61^{+5}_{-50}$	$-20\pm18^{+14}_{-9}$	$6\pm24^{+23}_{-59}$	188^{+44+4}_{-58-9}	$255_{-72-183}^{+56+12}$

Parameters **consistent** between **all five studied final states** Masses just above **B*****B and B*****B*** **thresholds** Relative phases swapped between Υ (~0°) and $h_{\rm b}$ (~180°) Indicates $Z_{\rm b}$'s could be **molecules**

Events / 0.1

120

100

80

60

40

20

Angular analysis

We perform angular analysis of $\Upsilon(5S) \rightarrow Z_h \pi_2 \rightarrow {\Upsilon(2-3S), h_h(1P)} \pi_1 \pi_2$ decays. Angles:

$$\begin{aligned} \theta_1 &= \angle (\pi_1, e^+) \quad [\pi_1 \text{ comes from } Z_b] \\ &\text{Sensitive to } \mathbf{2}^+ \\ \theta_2 &= \angle (\pi_2, e^+) \quad [\pi_2 \text{ comes from } \Upsilon(5S)] \\ &\text{Sensitive to } \mathbf{1}^- \text{ and } \mathbf{2}^- \\ \theta_{\pi\pi} &= \angle (\pi_1, \pi_2) \\ \varphi &= \angle (\text{plane}(\pi_1, e^+), \text{plane}(\pi_1, \pi_2)) \end{aligned}$$

 $\cos^{0.5} \theta_1$

20

Y(nS)

 θ_2

J. Wicht: $h_b(nP)$ and Z_b 's at $\Upsilon(5S)$

-0.5

 $\cos^{0.5} \theta_2$

$J^{P}=1^{+}$ is favored!

Summary

- Belle collected 121.4 fb⁻¹ at the $\Upsilon(5S)$ resonance
- First observation of two $b\overline{b}$ states: $h_{b}(1P)$ and $h_{b}(2P)$
 - Masses in agreement with expectations (CoG of $\,\chi_{\rm b}^{})$
 - Production ratio of h_b with respect to $\Upsilon(2S)$ is not suppressed as expected due to the spin-flip: production of h_b at $\Upsilon(5S)$ is exotic
 - No evidence of h_b in 711 fb⁻¹ at $\Upsilon(4S)$
- Two charged bottomonia resonances are seen in five different final states: $\Upsilon(5S) \rightarrow Z_b^{\pm}\pi^{\mp} \rightarrow {\Upsilon(1-3S), h_b(1-2P)}\pi^{+}\pi^{-}$

	Z _b (10610)	Z _b (10650)
M (MeV/c²)	10608.4 ± 2.0	10653.2±1.5
Γ (MeV)	15.6 ± 2.5	14.4±3.2

- Masses just above **B*****B** and **B*****B*** thresholds
- Angular analysis favors $J^{\mathtt{P}}{=}1^{+}$ at ${\sim}3\sigma$ levels over other assignments
- Compatible with B^{*}B^(*) molecule interpretation

Signal calibration

- Use the large exclusive " $\Upsilon(5S)\to\Upsilon(nS)\;\pi^+\pi^-$ with $\Upsilon(nS)\to\mu^+\mu^-$ " as reference
 - Signal: CrystalBall tail due to ISR
 - Reflections are also calibrated

	Polynomial	Fit	Signal	Selection
	order	range	shape	requirements
$N[h_b], 10^3$	± 2.4	± 3.6	$^{+1.2}_{-8.0}$	
$M[h_b], \mathrm{MeV}/c^2$	$\pm.04$	$\pm.10$	+0.04 -0.20	+.20 30
$N[h_b(2P)], 10^3$	± 2.2	± 2.6	+23. -9.0	_
$M[h_b(2P)], \mathrm{MeV}/c^2$	$\pm .10$	$\pm .20$	$^{+1.0}_{-0.0}$	$\pm.08$

J. Wicht: $h_b(nP)$ and Z_b 's at $\Upsilon(5S)$

- Most background is random combination of pions that can be described by polynomial function
- At MM~ $M_{\gamma(3S)}$ region: contribution from real $K_{s} \rightarrow \pi^{+}\pi^{-}$ peaks
 - Near threshold: $M_{\gamma(3S)} \sim E_{CM} M_{KS}$

Results: Υ(**2S**)π⁺π⁻

Results: Υ(2S)π⁺π⁻

Angular analysisExpectations $\Upsilon(5S) \rightarrow Z_b \pi_1 \rightarrow [\Upsilon(2S) \pi_2] \pi_1$

 $\begin{array}{ll}
\mathbf{1^{+}} & \underline{isotropic} & \lambda - beam \ direction \\
\mathbf{1^{-}} & \overline{|M_{tot}|^2} \propto p_1^2 [p_2^2 - (\lambda p_2)^2] + 2(p_1 p_2)(\lambda p_1)(\lambda p_2) \\
\mathbf{2^{+}} & \overline{|M_{tot}|^2} \propto (\lambda [p_1 \times p_2])^2 [2(p_1 p_2)^2 - \frac{1}{2} p_1^2 p_2^2] + \frac{1}{2} (p_1^2)^2 (p_2^2)^2 \\
& + (p_1 p_2)^2 [2(p_1 p_2)^2 - 2 p_1^2 p_2^2 + \frac{1}{2} (\lambda p_1)^2 p_2^2]. \\
\mathbf{2^{-}} & \overline{|M_{tot}|^2} \propto 6(p_1 p_2)^2 + 17 p_1^2 p_2^2 - 9 p_1^2 (\lambda p_2)^2 - 8 p_2^2 (\lambda p_1)^2 + 12(p_1 p_2)(\lambda p_1)(\lambda p_2)
\end{array}$

neglect Z_b recoil motion ($\beta < 0.02 \Rightarrow$ very good approximation) also formulae for h_b are available

Consider 1D projections

- $\boldsymbol{\theta}_1\text{, }\boldsymbol{\theta}_2\text{ polar angles of }1^{\text{st}}\text{ and }2^{\text{nd}}\text{ pions}$
- $\phi_{\rm p}\,$ angle btw planes defined by (1) $\pi_{\rm 1}$ & Z axis, (2) $\pi_{\rm 1}$ & $\pi_{\rm 2}$.

•Interference terms vanish after integration over other angular variables \Rightarrow subtraction of non-resonant contribution is possible.

Possible nature of Z_b's

arXiv:1105.4473

B*B and B*B* S-wave molecules

$$\left|Z_{b}^{'}\right\rangle = \frac{1}{\sqrt{2}} \mathbf{0}_{bb}^{-} \otimes \mathbf{1}_{Qq}^{-} - \frac{1}{\sqrt{2}} \mathbf{1}_{bb}^{-} \otimes \mathbf{0}_{Qq}^{-}$$
$$\left|Z_{b}^{'}\right\rangle = \frac{1}{\sqrt{2}} \mathbf{0}_{bb}^{-} \otimes \mathbf{1}_{Qq}^{-} + \frac{1}{\sqrt{2}} \mathbf{1}_{bb}^{-} \otimes \mathbf{0}_{Qq}^{-}$$

Masses of Z_b are close to B*B(*) thresholds

- Quantum numbers J^P=1⁺
- Amplitude ratio A[Z_b(10610)] / A[Z_b(10650)] ~1
- Relative phase ~0 for Υ and ~180⁰ for h_b
- Explains why $h_b \pi \pi$ is unsuppressed relative to $\Upsilon \pi \pi$
- Neutral partners of Z_b
- Additional measurements in B*B and B*B* mode should be done
- Existence of other molecular states is predicted