Measurement of 3-jet differential cross section $d\sigma_{3jet}/dM_{3jet}$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

> Peter Svoisky, University of Oklahoma, for the D0 collaboration

Motivation

α 3-jet events are directly sensitive to the pQCD matrix elements of $O(α_s^3)$

- Similar sensitivity to the PDFs as in 1-, 2-jet cross section measurements
- Recision phenomenology
 - Can be used for simultaneous determination of α_s and PDFs
- Rearch for physics beyond the SM

Detector & Event

- RLiquid Ar/UCalorimeter
 - Iet triggering
 - ☑ Three R=0.7 cone jets
 - Jet midpoint cone algorithm
- Silicon & Scintillating (
 - **Vertexing**
 - IES corrections
- Regional Muon system
 - Trigger efficiency studies

7/19/11

Data & Model

- - ☑ Inclusive jet triggers with different p_T thresholds
 - ✓ In each M_{3jet} bin chosen trigger fully efficient
- Particle-level jets from MC with MSTW2008LO PDFs to correct data for detector resolution
 - Section Fast simulation parameterized from GEANT full detector simulation

 - $\stackrel{\textbf{(Resolution effects in jet } p_{T_{\prime}}}{angles}$

Data & Selection

- Real Primary vertex within 50 cm of the center
 - Vertex is required to have 3 tracks pointing to it
- \bigcirc 3 reconstructed p_T ordered jets, p_T¹>150 GeV
 - OB 3 inclusive rapidity measurements:
 - $\begin{array}{c} (x) & |y| < 0.8, |y| < 1.6, |y| < 2.4, \\ p_T^3 > 40 \text{ GeV} \end{array}$
 - C³ 2 high p_T measurements: C³ p_T^3 >70 GeV, p_T^3 >100 GeV, |y| <2.4

JES Corrections

- \bigcirc Jet p_T are corrected for:
 - Image: Calorimeter response
 - 🕼 Energy flow through the jet cone
 - Additional interactions and pile-up
- Absolute energy calibration from data:
 - \bigcirc Z \rightarrow ee events
 - $rac{rac{rac}}{r}$ p_T imbalance in γ + jet events in |y| < 0.4
 - \bigcirc Di-jet events for higher |y|, p_T
- Corrections due to different fractional contributions of gluon and quark jets (2-4%)
- $\stackrel{\textbf{(N)}}{\underset{p_{T}}{\text{M}_{3jet}}} \text{ is calculated using the corrected jet } p_{T}$

Resolution Effects

≪ Vertex acceptance 91.4-92.9%

A JetID (shower shape, etc.) requirement efficiency 97.5%
Ist misID < 0.1%</p>

Systematics

Source	Value	Source	Value
Jet energy calibration	±10-30%	Reweigting of gen. events	±2.5%
Luminosity	±6.1%	Trigger efficiency	±2%
Jet p _T resolution	±1-5%	Jet θ resolution	±1%
Systematic shifts in y	±3%	Other	<1%

Differential Cross Section

7/19/11

Different PDFs with uncertainties

More PDFs

7/19/11

X² test

- At world average 2 $(\alpha_{s}(M_{z})=0.1184)$ for all PDFs lowest X² is at $\mu_r = \mu_f = \mu_0$
- Rest agreement MSTW08NLO $\alpha_{s}(M_{z})=0.121$ with X²=59.5
- χ^2 (for 49 data points) NNPDFv2.1 at α_s R $(M_{\tau})=0.123$ close
- ABKM09NLO α_{s} R $(M_{z})=0.1179$ only 1 value
- HERAPDFv1.0, R CT10 large X²
- R PDF sensitivity of 3-jet cross section data

- Experimental uncertainties with correlations \mathbf{G}
- Underlying event and hadronization uncertainties R $^{1/2}$ the size of individual correction, independent
- PDF uncertainties, statistical uncertainties ignored

Conclusions

- Representation of First measurement of inclusive 3-jet differential cross section as a function of M_{3jet} in the
- \bowtie 5 scenarios, 3 rapidity regions, 3 requirements on p_T of the 3rd jet
- ເ Compared to pQCD in NLO in α s and various PDF parametrizations
 - **Computed** X² for different scale choices and different $\alpha_s(M_z)$ values
 - Best description of the data from MSTW2008NLO and NNPDFv2.1 PDF sets
 - ABKM09NLO reasonable description of the data, slightly different shape
 - ✓ HERAPDFv1.0 and CT10 predict different M_{3jet} shape, poorer agreement with the data