Search for high-mass ZZ resonances

Aidan Robson University of Glasgow for the CDF Collaboration EPS, 21 July 2011

- Higgs?
- RS graviton?
- RS graviton in models with SM fields in bulk? eg Fitzpatrick, Kaplan, Randall, Wang, JHEP 0709 (2007) 013

Aidan Robson

Search for high-mass ZZ resonances at CDF

Most kinematic properties are as expected from SM prediction

For the high-mass events $p_{T}(ZZ)$ is not like SM prediction

 $ZZ \rightarrow 4\ell$

figure_10017

Fri Jul 8 02:03:56 2011

$ZZ \rightarrow 4\ell$

Wed Jul 13 21:50:39 201

For mean expected events prob. to observe \geq 4 events with M_{ZZ} >300GeV/ c^2 where M_{ZZ} of at least 4 within any 20GeV/ c^2 window: $O(10^{-4})$ (a range, depends Pythia/MC@NLO+Herwig)

Additionally include $p_{\tau}(ZZ)$ in likelihood: O(10⁻⁵)

Prob. of likelihood of p_{τ} (ZZ) distribution alone being less than that of the data for high-mass events: O(10⁻⁴)

00

figure_10014

Expected yield: $10 \times ZZ \rightarrow 4\ell$

Select Z→ee & Z→µµ as for $\ell\ell\ell$ channel Signal region defined as E_T >100GeV Here normalising Z+jets using: $50 < E_T < 100$ GeV and $|\Delta \phi_{min}| < 0.5$ Here cross-checking W+jets jet \rightarrow lepton misidentification method using same-charge events with $50 < E_T < 100 \text{ GeV}$

		electron channel	muon channel	
	standard model	13.6±1.8	12.4±1.8	
	data	18	9	
	expected M(G*)=325GeV/c ² , 1pb sig	nal 17±1	18±1	
son	Search for high-mass	77 resonances at CDF		

Aidan Robson

Expected yield: $20 \times ZZ \rightarrow 4\ell$

Select Z \rightarrow ee & Z \rightarrow µµ as for $\ell\ell\ell$ channel Additionally, ≥2 jets E_T >25GeV 70< M_{ii} <110 accepted as a Z candidate Here, *M*(lljj)<300GeV/*c*² defines control region for Alpgen Z+jets normalisation

	electron channel	muon channel	
standard model	424±40	266±24	1
data	392	253	
expected $M(G^*)=325 \text{GeV}/c^2$, 1pb	signal 41±1	32±1	5

and $p_{\tau}(II)$ or $p_{\tau}(jj) > 40 \text{GeV}/c$

lll

Searched for heavy resonances decaying to Z pairs

- *M*_{zz} and *p*_T(ZZ) distributions in 4 lepton channel are different from those expected from standard model
- Four events have M_{ZZ} consistent with 327GeV/ c^2
- $\ell \ell + E_T$ and $\ell \ell j j$ channels do not confirm a new resonance
- limits set at level of 0.3pb in RS graviton models

RS1 graviton, $k/M_p=0.1$ $M=600 \text{ GeV}/c^2$, $\sigma(\text{pp}\rightarrow\text{G}\rightarrow\text{ZZ}) \approx 1\text{pb}$ $M=700 \text{ GeV}/c^2$, $\sigma(\text{pp}\rightarrow\text{G}\rightarrow\text{ZZ}) \approx 0.1\text{pb}$

Previous CDF limit 491 GeV/ c^2 .

leptons	$M_{Z_1}, p_T(Z_1)$	$M_{Z_2}, p_T(Z_2)$	M_{ZZ}	$p_T(ZZ)$	E_T	Njets	Jet E_T
	$(\operatorname{GeV}/c^2), (\operatorname{GeV}/c)$	$(\operatorname{GeV}/c^2), (\operatorname{GeV}/c)$	(GeV/c^2)	(GeV/c)	(GeV)		(GeV)
eeee	93.3, 18.2	92.9,17.4	196.6	35	14	0	
$\mu\mu\mu\mu$	85.9,101.9	92.1, 54.8	321.1	47.4	8.4	1	36.7
$ee\mu\mu$	92.0,156.0	89.9,139.7	324.7	126.8	31	2	97.4, 40.0
eeee	101.3, 57.8	91.6, 13.2	334.4	44.7	9.9	1	22.7
$ee\mu\mu$	87.9,17.7	91.8, 29.8	191.8	31	10.5	0	
$\mu\mu\mu\mu$	95.9, 197.9	92.0, 87.2	329.0	110.9	23.3	2	97.2, 24.7
$ee\mu\mu$	95.2, 36.7	89.7, 38.8	237.5	10.2	1.2	0	
μμμμ	88.4, 51.0	89.8, 26.6	194.1	25.9	3.3	0	