Jet Measurements in pp and PbPb Collisions

Frank Ma

Massachusetts Institute of Technology

for the CMS Collaboration

EPS-HEP, Grenoble, Jul 2011

Jet Physics in Heavy ion Collisions

CMS Detector

Jets in CMS Detector

Jet Reconstruction

Calorimeter Jet Finder

- Iterative Cone Algorithm
- R = 0.5

Underlying event subtraction

Iterative PileUp subtraction*

* O. Kodolova, I. Vardanian, A. Nikitenko et al., Eur. Phys. J. C50 (2007) 117

Jet Reconstruction

arXiv:1102.1957 (Accepted by PRC)

Jet reconstruction fully efficient above 50 GeV/c

Jet Energy Correction

Jet p_T corrected to generator final state particle level

- Correction derived from PYTHIA
- Closure checked with dijets embedded into PbPb data

EPS-HEP 2011, Grenoble

Jets in Data

*Uncorrected for p_T resolution

Reference Distributions

• PYTHIA 6:

- PYTHIA + DATA:
 - PYTHIA dijet events embedded into real data background
 - modified isospin (²⁰⁸₈₂Pb)

Jet Angular Correlation

Jet Angular Correlation

medium does not lead to a visible angular decorrelation

DiJet Energy Asymmetry

- Dijet selection:
 - $|\eta^{\text{Jet}}| < 2$
 - Leading jet $p_{T,1} > 120 \text{ GeV/c}$
 - Subleading jet $p_{T,2} > 50$ GeV/c
 - $\Delta \phi_{1,2} > 2\pi/3$

• Quantify dijet energy imbalance by asymmetry ratio:

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Removes uncertainties in overall jet energy scale

DiJet Energy Asymmetry

Fraction of Balanced Jets vs Centrality

Fraction of found balanced dijets out of all selected leading jets

*N_{part}: Number of nucleon participating in collisions

Fraction of Balanced Jets vs Centrality

Parton energy loss is observed as a pronounced suppression of balance dijets in central PbPb

Missing
$$p_T^{\parallel}$$
: $p_T^{\parallel} = \sum_{\text{Tracks}} -p_T^{\text{Track}} \cos(\phi_{\text{Track}} - \phi_{\text{Leading Jet}})$

Calculate projection of p_T on leading jet axis and average over selected tracks with $p_T > 0.5$ GeV/c and $|\eta| < 2.4$

Vector sum of all track p_{T} in the event Study projection to leading jet direction

Intergrating over all tracks in the event, the momentum balance is found.

Missing- p_T^{\parallel}

The momentum difference in the dijet is balanced by low p_T particles

arXiv:1102.1957 (Accepted by PRC)

$Missing-p_T^{\parallel}$

arXiv:1102.1957 (Accepted by PRC)

$Missing-p_T^{||}$

arXiv:1102.1957 (Accepted by PRC)

The momentum difference in the dijet is balanced by low $p_{\rm T}$ particles at large angles relative to the away side jet axis

Jet Fragmentation

Partons fragment into hadrons

Jet Fragmentation Observable

 $z = p_T^{Hadron}/p_T^{Parton}$: fraction of jet energy a fragment hadron carries.

Jet Fragmentation Observable

- Eliminate the underlying event contribution, $p_T > 4$ GeV/c
- Select particles in a $\Delta R=0.3$ cone

Fragmentation Function in Data

GenJet D_1

α (RecoJet p

< RecoJet p / GenJet p

50

100

150

CMS Simulation

50-100%

- Particle Flow Jet Reconstruction
 - Anti k_⊤, R=0.3
 - Same background subtraction as calorimeter based jets
 - Fully efficient for $p_T > 40 \text{GeV/c}$
 - Applied in pp and PbPb
- **Dijet selection**
 - $p_{T}^{Jet1} > 100 \text{ GeV/c}$
 - $p_{T}^{Jet2} > 40 \text{ GeV/c}$
 - $\Delta \phi_{12} > 2\pi/3$
- Compare Leading and Subleading Jet
 - Select Tracks in $\Delta R=0.3$ cone
 - $p_T > 4 \text{ GeV/c}$

Iterative Cone, Calo, R=0

Anti-k_T, PF, R=0.3

0

PYTHIA + HYDJET, |η| < 2

26

Jet Fragmentations: pp vs PbPb

Leading and subleading jet in PbPb fragment like jets of corresponding energy in pp collisions

CMS PAS HIN-11-004

(reference ξ : Smear pp to PbPb jet p_T resolution, reweight jet p_T spectrum to match PbPb)

PbPb/pp vs Dijet imbalance

PbPb/pp vs Dijet imbalance

4th Lesson:

Fragmentation pattern independent of energy lost in medium Consistent with partons fragmenting in vacuum

Summary of Jet Quenching at LHC

Backups

Heavy ion Trivia: Centrality

Total HF energy used to determine PbPb impact parameter.

Track-Jet Correlations

Track-Jet Correlations

- Study charged particle distributions within jet cones
 - Use η reflected (η -> - η) reference cones for jet-by-jet subtraction of Pb+Pb underlying event
 - This avoids $\boldsymbol{\phi}$ dependent variations due to elliptic flow
 - Exclude $|\eta_{\text{Jet}}| < 0.8$ and $|\eta_{\text{Jet}}| > 1.6$
 - Study associated track distributions versus p_{T} and ΔR
 - Uncertainties in background subtraction limit this method to $p_T > 1$ GeV/c and $\Delta R < 0.8$

Residual quenched energy in jets

Residual quenched energy in a R = 0.3 cone

Dijet Energy Imbalance R=0.5

Dijet Imbalance A_J R=0.3

PYTHIA Momentum Balance

Random Cone Background

Pileup subtraction per tower

Fragmentation Functions

- Fragmentation Functions are reconstructed by correlating the tracks in a R=0.3 cone around the jet axis with the corresponding jets
 - p_T>4GeV cut applied to the tracks to eliminate the underlying event contribution

Jet p_T reweighting

pp, MC:

- PbPb data show different
 jet p_T spectra compared
 to MC
- To compare the
 fragmentation functions
 the jet p_T distributions in
 embedded MC are
 reweighted to match the
 PbPb reconstructed
 spectrum

Heavy Ion Track Reconstruction

Jet Reco. Performance

- Comparing Anti-k_T Particle Flow and Calorimeter based Iterative Cone type jet finder
 - Anti-k_T PF gives significantly higher efficiency for low jet p_T
 - Particle Flow Objects have a lower effective seed threshold
 - Small cone size is less prone to background fluctuations and shows lower fake jet rate at low $\ensuremath{p_{\text{T}}}$

Jet p_T resolution compared to pp

 p_T resolution with respect to pp

Trigger Selection

Efficiency (Trigger / Minimum Bias) CMS PbPb \/s_{NN} = 2.76 Te\ (a) Minimum Bias Trigger HF or BSC firing in coincidence on 0.8 both sides 97+/-3% efficient 0.6 0.4 **Jet Trigger** Jet Trigger Level-1: Single Jet 30 GeV 0.2 (uncorrected $p_2 > 50 \text{ GeV/c}, |\eta| < 2$) (uncorrected energy) HLT: Single Jet 50 GeV 0 100 150 200 50 250 300 'n (bkgd subtracted uncorr. energy) Corrected leading jet p₋ (GeV/c) Fully efficient for corrected energy

Collision Rate: 1-210 Hz, Jet50U Rate: < 1 Hz

above 100 GeV

Jet Algorithm

O. Kodolova, I. Vardanian, A. Nikitenko et al., Eur. Phys. J. C50 (2007)

A_j broadening due to Fluctuations

Different Gaussian smearing

PYTHIA+HYDJET

PYTHIA + Fluctuations

- Apply ATLAS's selection on the smeared jets:
 - $p_{T1} > 100 \text{ GeV}, p_{T2} > 25 \text{ GeV}, dphi > pi/2$
 - GenJet $p_T > 0$ GeV
- Applying a gaussian smearing to PYTHIA we can reproduce the results of the Salam paper.

Ingredients

• Select only Jets above $p_T = 3GeV$

Ingredients II

- Adding many low p_T jets, smeared to higher p_T than the true away side jet, compresses the Aj distribution
 - Tested by adding the 0-3GeV jets in the analysis

Ingredients III

- Balanced dijets + fluctuations can fake a wide Aj distribution
 - Needs a very large number (~100) of low p_T jets per event
 - Remember: $dn/d\eta^{ch} \sim 6$ in letal < 5 -> ~60 charged particles/event
 - And a very large σ (20GeV) for the smearing
 - based on a Gaussian fit to the low $p_{\rm T}$ part of the ATLAS min bias jet spectrum
 - ATLAS reports σ ~8 GeV for their background fluctuations

Hydjet

- - The hard part of a central HYDJET event consists of ~300 unquenched PYTHIA events with p_⊤hat of ~7GeV
 - Low p_T jets smear the leading jets by superposition and cause a combinatorial problem ٠

