Update on Wij from CDF

Viviana Cavaliere for the CDF Collaboration

W+jets Final State

 Measurements of associated production of a W boson and jets are important test of Standard Model

- Iv + jets signature shared by several important processes:
 - WW+WZ
 - single top
 - WH
- W+jets is a background for several searches beyond the SM
- Crucial to understand tools:
 - Event Generators
 - Analysis techniques

CDF Detector

W reconstruction

• Electron ET > 20 GeV and $|\eta| < 1$:

Require that 90% of energy is deposited in the EM calorimeter
calorimeter showers consistent with electromagnetic interaction

 •Muon PT > 20 GeV/c and |η| < 1:
 • Require high quality track and matching between the track and muon chamber hits

Both required to be isolated: i.e. no jets

• We further require MET >25 GeV and MTW > 30 GeV/c2 to ensure the presence of a real W

Jets Definition and Selection

- Jets are reconstructed using the JETCLU algorithm (standard at CDF)
- Cluster the Energy in cones $\Delta R < 0.4$
- Calorimetric signature inconsistent with electron signature
- Select exactly 2 jets with ET > 30 GeV and $|\eta|$ < 2.4
- Require PT(dijet) > 40 GeV/c: to smoothen Mjj

Sample Composition

- W→lν + jets (l=e,μ,τ):
 - high production xsec (2066pb), 80% of the sample
- $Z \rightarrow II + jets (I=e,\mu,\tau)$:

•one of the lepton escapes detection. Cross section 187 pb

• top + single top:

•final state similar to signal with at least one real W + 2 jet. $\sigma(tt) \sim 7.5$ pb and $\sigma(single top) \sim 2.9$ pb

- QCD Multijet:
 - Events without a primary lepton from W decay: ex. Jet faking a letpon

Process	Model	σ (pb)
WW/WZ inclusive	ΡΥΤΗΙΑ	$\textbf{15.9} \pm \textbf{0.9}$
$Z ightarrow e, \mu, au$ +jets	Alpgen+ Pythia	$\textbf{787} \pm \textbf{85}$
$tar{t}$	ΡΥΤΗΙΑ	$\textbf{7.5} \pm \textbf{0.83}$
single top	Madevent + Pythia	$\textbf{2.86} \pm \textbf{0.36}$
W+jets	Alpgen+ Pythia	from data
QCD multijet	from data	from data

Fitting the Mjj in 7.3 fb-1

- Check agreement of Data with out of the box MC (Alpgen with standard parameters)
- Excess of events in the 115-175 GeV/c2 dijet mass region, both in the electron and muon sample
- Fit the Mjj with SM templates.

SM Templates + Gaussian

- Data fitted with SM components plus a gaussian
- Fit range 28-200 GeV/c2
- Statistical significance (no systematics)
 4.8σ, including trial factor
- Shape systematics on:
 - QCD, Jet Energy Scale
 - W+jets renorm. scale
 - The largest p-value is 1.9 * 10-5
 - Corresponding to a significance of 4.1 standard deviations

	muons	electrons
Excess events	158 +- 46	240 +- 55
Excess/exp. WW+WZ	42% +- 12%	47% +- 10%
Gaussian mean	147 +- 5 GeV (stat. only)	

SM Templates + Gaussian

- Data fitted with SM components plus a gaussian
- Fit range 28-200 GeV/c2
- Statistical significance (no systematics)
 4.8σ, including trial factor
- Shape systematics on:
 - QCD, Jet Energy Scale
 - W+jets renorm. scale
 - The largest p-value is 1.9 * 10-5
 - Corresponding to a significance of 4.1 standard deviations

	muons	electrons
Excess events	158 +- 46	240 +- 55
Excess/exp. WW+WZ	42% +- 12%	47% +- 10%
Gaussian mean	147 +- 5 GeV (stat. only)	

Best Fitting Syst. Combination

 \bullet Fit performed using the combination of systematics that fits the data best: lowest χ_2

• ΔRjj (Mjj < 115 and Mjj > 175 GeV/c2) shown with the same combination of systematic 10

NLO Effects

- In order to test Next to Leading Order contributions to the W+2 partons prediction, we compare (private communication with J.Campbell, E. Eichten, K.Lane, A.Martin) ALPGEN and interfaced to PYTHIA for showering to a sample of W+2 partons simulated using the MCFM.
- We extract a correction as a function of M_{jj} that is applied to the ALPGEN + PYTHIA sample used in our background model.
- This procedure returns a statistical significance of 3.4σ .

Excess Kinematics

Look into the 115 < Mjj < 175 GeV/c² region. Numerical events excess comes from mjj fit.

Excess Kinematics

 $M(I_{V_{ij}}) - M_{w} - M_{ij}$

Excess Kinematics

DRjj

Increasing P_T(dijet) > 60

• Excess stays when we change completely the shape of the W+jets by applying a higher cut on the ptjj

$P_{T}(dijet) > 60 \& \Delta \phi > 1.0$

We are able to select the region where the excess is more prominent

$P_{T}(dijet) > 60 \& \Delta \phi > 1.0$

Technirho -> W + techniphi Eichten, Lane, Martin

17

Meanwhile

• On the other side of the ring...

Do analysis

19

similar analysis with 4.3 fb⁻¹ [arXiv:1106.1921]

 $\sigma(p\bar{p} \to WX) = 0.82^{+0.83}_{-0.82} \text{ pb}$

Calculated using WH150 acc*eff.

- Do result clearly favors the null hypothesis:
 - No significant discrepancy w.r.t. background model
- Identified some differences:
 - Do jets corrected for out-of-cone: effective jet threshold lower
 - Double QCD contamination from low purity electrons
 - Fit procedure morphs Mjj to correct for systematics
 - Quantitative effect on Mjj templates not available

Quantitave CDF vs Do comparison

- Do excludes a 4pb signal at 4.3σ level
 - doesn't account for uncertainty on CDF number "order of 4b xsec"
- Evaluated xsec using Do procedure
 - 3.1 +- 0.8 pb (with 4.3 fb-1 data)
 - 3.0 +- 0.7 pb (with 7.3 fb-1 data)
- To be compared with Do fit of:
 - 0.82 +- 0.83 pb
- While Do favors the null hyptotesis, two results are only ~2σ apart → Interesting to see results with all the dat²⁰

Conclusions

- CDF vs Do difference to be understood
 - FNAL started a task force
 - Will compare results at each step
- Whatever we learn important for current and future analyses of W+jets samples
- CDF studies on going on other possible final states

Conclusions

- CDF vs Do difference to be understood
 - FNAL started a task force
 - Will compare results at each step
- Whatever we learn important for current and future analyses of W+jets samples
- CDF studies on going on other possible final states

Backup

Mjj < 115 OR Mjj > 175

Mjj < 115 OR Mjj > 175

W+n≥3 Jet: Top Enhanced

Mjj in 3 and 4 Jet Events

40

20

W + **n≥3** jet

W + n≥4 jet •

Good agreement between bkg model and data (this is true for any combination of jet)

U 100 200 KS = 26.9 %, χ^2 /ndf = 570.8/36 $Z \rightarrow II + iets$

tt + sinale t

300

M_a GeV/c²

quark/gluon composition studies

