Global SUSY Fits with the MasterCode Framework

Implications of 2010 Search results

O. Buchmueller, R. Cavanaugh, D. Colling, A. de Roeck, M.J. Dolan, J.R. Ellis, H. Flächer, S. Heinemeyer, G. Isidori, D. Martínez Santos, K.A. Olive, **S. Rogerson**, F.J. Ronga, G. Weiglein

July 22, 2011

Imperial College London

(日) (四) (문) (문) (문) (문)

Outline

Aims

Models Covered

Observables

Global Likelihood Function

Search Implementations

Search Impact

The Future

Aims

- Use broad range of observables to determine preferred phenomenology for constrained models of SUSY
- Understand the impact and scope of the first (2010) searches for SUSY from the LHC
- Combine with other results impacting SUSY parameter space
- Determine new preferred regions and probability of fit for these models

Models Covered

CMSSM	$m_0, m_{1/2}, A_0, tan(eta), ext{sign}(\mu)$	Boundary Conditions Unification +
VCMSSM	$m_0,m_{1/2},A_0,\mathrm{sign}(\mu)$	$B_0 = A_0 + m_0$
MSUGRA	$m_0,m_{1/2},A_0,\mathrm{sign}(\mu)$	$B_0 = A_0 + m_0; m_0 = m_{3/2}$
NUHM1	$m_0, m_{1/2}, A_0, m_{H_{1,2}}^2, \mathrm{sign}(\mu)$	$m_{1,2}=m_0+\Delta m_{H_{1,2}}$

э

Observables

Examples

- Flavour Physics
 - $\operatorname{R}(b \to s\gamma)$
 - BR $(B_s \rightarrow \mu \mu)$
 - $\operatorname{R}(B \to \tau \nu)$
- EWPOs
 - ► M_W
 - Γ_Z
 - $A_{fb}(b), A_{fb}(c)$
- Nuisance parameters
 - M_Z, m_t, \ldots

In total we look at 36 individual measurements

- Cosmology
 - Ωh^2

•
$$\sigma_p^{SI}$$

- Particle Spectrum
 - *M<sub>h⁰* of particular interest
 </sub>
- Other indirect constraints

포카 포

Global Likelihood Function

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}}$$
(1)

+
$$\chi^2(M_h) + \chi^2(\mathrm{BR}(B_s \to \mu\mu))$$
 (2)

+
$$\chi^2$$
 (SUSY search limits) (3)

+
$$\sum_{i}^{M} \frac{\left(f_{SM_{i}}^{obs} - f_{SM_{i}}^{fit}\right)^{2}}{\sigma\left(f_{SM_{i}}\right)^{2}}$$
 (4)

+
$$\chi^2$$
(LHC + Xenon) (5)

ATLAS + CMS Direct Searches

Combination of

- CMS $35pb^{-1}\mathcal{E}_t$
- ATLAS 0I and 1I combination

Assume

 $n_{
m events} \propto M^{-4} (M^2 \equiv m_0^2 + m_{1/2}^2)$ Then

$$\chi^2 \sim \chi^2_{95\%} \left(\frac{M_{\rho}}{M_{95\%}}\right)^4$$

For each point in $(m_0, m_{1/2})$ we take $Max (\chi^2 (CMS), \chi^2 (ATLAS))$

CMS: SUSY Higgs

$$\chi^2 \propto (\sigma \times {\rm BR})^{\rho(M_A)}$$

- use the three contours to fit for p (M_A)
- in the region of interest $(\sigma \times BR) \propto \tan^2(\beta)$

$$\chi^2 \sim \left(\frac{\tan^2\left(\beta\right)}{\tan^2\left(\beta\right)_{95\%}}\right)^{p(M_A)}$$

(ロト 4 聞) 4 団) 4 団) 三 のの(3

LHCb, D0 and CDF: $BR(B_s \rightarrow \mu\mu)$

Combine LHCb (left) with the D0 and CDF results

- Use toy experiments to recreate the 90% CL upper limits from each experiment
- Toys recreate the 95% CL limits
- Combine using CL_s method: generate likelihood function.

Treat

•
$$f_d/f_s$$
 • BR $(B^+ \rightarrow J/\psi (\mu^+ \mu^-) K^+)$

as common errors

Xenon100

The uncertainty on the π -nucleon σ term is also accounted for, where we look at both

•
$$\Sigma_{\pi N} = 50 \pm 14$$
 • $\Sigma_{\pi N} = 64 \pm 8$

- Construct likelihood model for event numbers using CL_s method
- Close to a Gaussian with $\mu = 1.2, \ \sigma = 3.2$
- ▶ 90% CL corresponds to 6.1 events, rescale from contour (left)
- The excess in the Xenon experiments leads to a contribution χ² ~ 0.3 for small σ^{SI}_p

Sparticles

Lightest MSSM Higgs mass

 $BR(B_s \rightarrow \mu \mu)$

Dark Matter: σ_p^{SI}

Dark Matter: σ_p^{SI}

Parameter Spaces

NUHM1

CMSSM

▲日▼▲□▼▲□▼▲□▼ ● ● ●

3

Parameter Spaces

Model Probabilities

NUHM1

CMSSM

Model	Min χ^2	Prob	$m_{1/2}$	<i>m</i> 0	A ₀	$tan(\beta)$	$M_h^{\rm no \ LEP}$	
CMSSM	22.5/19	26%	310	60	-60	10	109	
post-LHC/Xenon	26.2/20	16%	470	170	-780	22	116	
NUHM1	20.5/17	25%	240	100	920	7	119	
post-LHC/Xenon	24.2/19	19%	530	110	-370	27	118	

Summary

- ▶ $m_{\tilde{g}} > 1 \text{TeV}$
- ▶ $m_{h^0} > 115 \text{GeV}$
- ▶ BR $(B_s \rightarrow \mu\mu)$ preferred at ~ 1 × SM: CMS 1.9e-8 (5.5 × SM@95%)
- ▶ $P(\chi^2, n_D)_{\text{model}}$ falling. $P \sim 0.1$. $1 f b^{-1}$ searches: expect to see P < 0.05.
- Air is starting to become very thin for these constrained models of SUSY

BACKUP SLIDES

Э

Thresholds

