Detectors for Leptonic CP Violation at the Neutrino Factory R. Bayes¹, A. Bross³, A. Cervera-Villanueva², M. Ellis^{4,5}, A. Laing¹, F.J.P. Soler¹, and R. Wands³ ¹University of Glasgow, ²IFIC and Universidad de Valencia, ³Fermilab, ⁴Brunell University, ⁵Westpac Institutional Bank, Australia, on behalf of the IDS-NF collaboration #### Introduction - Proposed far detector for Neutrino Factory. - To be used with a near detector for measurement of θ_{13} and δ_{CP} . - Optimized to carry out "Golden Channel" measurements. - ullet Looking for $u_{m e} ightarrow u_{\mu}$ or $ar u_{m e} ightarrow ar u_{\mu}$ oscillations. - Detects muon of sign opposite to that generated by neutrino beam. - Simulation of detector needed to characterize parameter sensitivity ## **Conceptual Design for MIND** Schematic drawing of Magnetized Iron Neutrino Detector Baseline parameters for MIND at two baseline distances | Parameter | MIND 1 | MIND 2 | |-------------------------------------|------------------------|------------------------| | Distance (km) | 3000-5000 | 7000-8000 | | Fiducial Mass (kTon) | 100 | 50 | | Iron Plate Dimensions (cm) | 1500×1500×3 | 1500×1500×3 | | Length of Detector (m) | 125 | 62.5 | | Number of Iron Plates | 2500 | 1250 | | Scintillator Bar Dimensions (cm) | $1500\times3.5\times1$ | $1500\times3.5\times1$ | | Number scinitillator bars per plane | 429 | 429 | | Total number of scintillator bars | 2.14×10^{6} | 1.07×10^{6} | | Total number of readout channels | 4.28×10^{6} | 2.14×10^{6} | | Magnetic Field (T) | > 1 | > 1 | ## **MIND Magnetic Field** - Required for identification of wrong sign muons. - Magnetic field induced in iron by by superconducting transmission line Magnetic field in homogeneous iron plate ## **Simplified MIND Simulation** - Assumes a square cross section; $14 \text{ m} \times 14 \text{ m} \times 40 \text{ m}$. - Uses a uniform, verticle, 1 Tesla Magnetic field. - Alternating 3 cm iron and 2 cm scintillator planes used. - Efficiency of simplified detector: • Sensitivity of detector to δ_{CP} and θ_{13} in normal heirarchy: #### **Toward a Realistic MIND Simulation** - Replaced NUANCE neutrino generater with GENIE. - Adopted octagonal geometry in simulation. - Introduced a realistic, toroidal field map. - Simulation of two events using GEANT 4: Re-optimization of reconstruction for this environment in progress. ### **Alternate Far Detector: Totally Active Scintillating Detector** Composed entirely of scintillator bars - ullet Can also measure $u_{\mu} ightarrow u_{e}$ and $ar{ u}_{\mu} ightarrow all e$ oscillations. - Magnetic field must be generated external to the detector.