

Detectors for Leptonic CP Violation at the Neutrino Factory

R. Bayes¹, A. Bross³, A. Cervera-Villanueva², M. Ellis^{4,5}, A. Laing¹, F.J.P. Soler¹, and R. Wands³

¹University of Glasgow, ²IFIC and Universidad de Valencia, ³Fermilab, ⁴Brunell University, ⁵Westpac Institutional Bank, Australia, on behalf of the IDS-NF collaboration

Introduction

- Proposed far detector for Neutrino Factory.
- To be used with a near detector for measurement of θ_{13} and δ_{CP} .
- Optimized to carry out "Golden Channel" measurements.
 - ullet Looking for $u_{m e}
 ightarrow
 u_{\mu}$ or $ar
 u_{m e}
 ightarrow ar
 u_{\mu}$ oscillations.
 - Detects muon of sign opposite to that generated by neutrino beam.
- Simulation of detector needed to characterize parameter sensitivity

Conceptual Design for MIND

Schematic drawing of Magnetized Iron Neutrino Detector

Baseline parameters for MIND at two baseline distances

Parameter	MIND 1	MIND 2
Distance (km)	3000-5000	7000-8000
Fiducial Mass (kTon)	100	50
Iron Plate Dimensions (cm)	1500×1500×3	1500×1500×3
Length of Detector (m)	125	62.5
Number of Iron Plates	2500	1250
Scintillator Bar Dimensions (cm)	$1500\times3.5\times1$	$1500\times3.5\times1$
Number scinitillator bars per plane	429	429
Total number of scintillator bars	2.14×10^{6}	1.07×10^{6}
Total number of readout channels	4.28×10^{6}	2.14×10^{6}
Magnetic Field (T)	> 1	> 1

MIND Magnetic Field

- Required for identification of wrong sign muons.
- Magnetic field induced in iron by by superconducting transmission line

Magnetic field in homogeneous iron plate

Simplified MIND Simulation

- Assumes a square cross section; $14 \text{ m} \times 14 \text{ m} \times 40 \text{ m}$.
- Uses a uniform, verticle, 1 Tesla Magnetic field.
- Alternating 3 cm iron and 2 cm scintillator planes used.
- Efficiency of simplified detector:

• Sensitivity of detector to δ_{CP} and θ_{13} in normal heirarchy:

Toward a Realistic MIND Simulation

- Replaced NUANCE neutrino generater with GENIE.
- Adopted octagonal geometry in simulation.
- Introduced a realistic, toroidal field map.
- Simulation of two events using GEANT 4:

Re-optimization of reconstruction for this environment in progress.

Alternate Far Detector: Totally Active Scintillating Detector

Composed entirely of scintillator bars

- ullet Can also measure $u_{\mu}
 ightarrow
 u_{e}$ and $ar{
 u}_{\mu}
 ightarrow
 all e$ oscillations.
- Magnetic field must be generated external to the detector.