KLOE measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ with Initial State Radiation and the $\pi\pi$ contribution to the muon anomaly

> Graziano Venanzoni (for the KLOE/KLOE-2 collaboration) Laboratori Nazionali di Frascati

EPS HEP 2011, Grenoble, 23 July 2011

Outline

Normalized

to luminosity ($e^+e^- \rightarrow e^+e^-(\gamma)$)

- KLOE measurements of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$:
 - Small (photon) angle measurements (KLOE05, KLOE08)
 - Large (photon) angle measurement (KLOE10)
 - Evaluation of $a_{\mu}^{\pi\pi}$ and comparison with CMD-2/SND/BaBar
- New measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ by $\pi\pi\gamma/\mu\mu\gamma$ ratio (KLOE11, *preliminary*)
 - Comparison with KLOE08, KLOE10 and evaluation of $a_{\mu}^{\pi\pi}$
- Outlook and conclusion

ISR: Initial State Radiation

Neglecting final state radiation (FSR):

Theoretical input: precise calculation of the radiation function H(s, M²_{hadr}) → EVA + PHOKHARA MC Generator

> Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function)

IN 2005 KLOE has published the first precision measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with ISR using 2001 data (140pb⁻¹) PLB606(2005)12 $\Rightarrow \sim 3\sigma$ discrepancy btw a_{μ}^{SM} and a_{μ}^{exp}

DAΦNE: A Φ-Factory in Frascati (near Rome)

e^+e^- - collider with $\sqrt{s}=m_{\Phi}\approx 1.0195$ GeV

KLOE05 measurement (PLB606 (2005)12) was based on 140pb⁻¹ of 2001 data!

KLOE08 measurement (PLB670 (2009)285) was based on 240pb⁻¹ from 2002 data!

Integrated Luminosity

Peak Luminosity L_{peak} = 1.5 • 10³² cm⁻²s⁻¹

2006:

- Energy scan_(4 points around m_{Φ} -peak)
- 240 pb⁻¹ at \sqrt{s} = 1000 MeV (off-peak data)

KLOE10 measurement (PLB700 (2011) 102) based on 233 pb⁻¹ of 2006 data (at 1 GeV, different event selection)

KLOE Detector

Drift chamber

 σ_p/p = 0.4% (for 90^o tracks) $\sigma_{xy} \approx 150 \text{ mm}, \sigma_z \approx 2 \text{ mm}$ **Excellent momentum** resolution

Full stereo geometry, 4m diameter, 52.140 wires 90% Helium, 10% iC₄H₁₀

бm

KLOE Detector

Electromagnetic Calorimeter

 $\sigma_{T} = 54 \text{ ps} / \sqrt{E(GeV)} \oplus 100 \text{ ps}$ (Bunch length contribution subtracted from constant term) *Excellent timing resolution*

 $\sigma_{\rm F}/{\rm E} = 5.7\% / \sqrt{{\rm E}({\rm GeV})}$

Event Selection: Small Angle (SA)

Pion tracks at large angles

 $50^{\circ} < \theta_{\pi} < 130^{\circ}$

a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

➔ Photon momentum from kinematics:

$$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

Event Selection: Large Angle (LA)

Pion tracks at large angles

 $50^{\circ} < \theta_{\pi} < 130^{\circ}$

a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

➔ Photon momentum from kinematics:

$$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

b) Photons at large angles $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

→Photon is explicitly measured in the detector!

- Threshold region accessible
- Lower signal statistics
- Increased contribution from FSR and $\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$ (use off peak data)

KLOE08: Small Angle (\sqrt{s} = 1020 MeV)

KLOE

Systematic errors on $a_{\mu}^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
p/e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance $(\theta_{\pi\pi})$	0.2%
Acceptance (θ_{π})	negligible
Unfolding	negligible
Software Trigger	0.1%
√s dep. Of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_{\mu} = 0.6 \%$

	•
FSR treatment	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.6 \%$

 $a_{\mu}^{\pi\pi} = \int_{x_1}^{x_2} \sigma_{ee \to \pi\pi}(s) K(s) ds$

 $\sigma_{\pi\pi},$ undressed from VP, inclusive for FSR as function of $(M^0_{\ \pi\pi})^2$

a_μ^{ππ}(0.35-0.95GeV²) = (387.2 ± 0.5_{stat}±2.4_{sys} ±2.3_{theo}) · 10⁻¹⁰

KLOE10: Large Angle (\sqrt{s} = 1000 MeV)

Phys. Lett. B 700 (2011) 102

able of systematic errors on $a_{\mu}^{\pi\pi}(0.1-0.85 \text{ GeV}^2)$:		
Reconstruction Filter	negligible	
Background	0.5%	
$f_0 + \rho \pi$	0.4%	
Ω cut	0.2%	
Trackmass	0.5%	
p/e-ID and TCA	negligible	
Tracking	0.3%	
Trigger	0.2%	
Acceptance	0.5%	
Unfolding	negligible	
Software Trigger	0.1%	
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%	

experimental fractional error on $a_{\mu} = 1.0$ %

FSR treatment	0.8%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on a_{μ} = 0.9 %

0.9% 0.4% 1.0%

KLOE08 result compared to KLOE10:

Excellent agreement with KLOE08, expecially above 0.5 GeV²

Combination of KLOE08 and KLOE10: $a_{\mu}^{\pi\pi}$ (0.1-0.95 GeV²) = (488.6±6.0) · 10⁻¹⁰

KLOE covers ~70% of total a_{μ}^{HLO} with a fractional total error of 1.2%

Comparison of results: KLOE10 vs CMD-2/SND

CMD and SND results compared to KLOE10: Fractional difference

Comparison of results: KLOE10 vs BaBar

BaBar results compared to KLOE10: Fractional difference

New $\sigma_{\pi\pi}$ measurement from π/μ

An alternative way to obtain $|F_{\pi}|^2$ is the bin-by-bin ratio of pion over muon yields (instead of using absolute normalization with Bhabhas).

• radiator function

• int. luminosity from Bhabhas

• Vacuum polarization

Separation btw $\pi\pi\gamma$ and $\mu\mu\gamma$ using M_{TRK}

• muons: $M_{Trk} < 115 \text{ MeV}$ • pions : $M_{Trk} > 130 \text{ MeV}$ Very important control of π/μ separation in the ρ region! ($\sigma_{\pi\pi} >> \sigma_{\mu\mu}$)

KLOE11: analysis of $\pi\pi\gamma/\mu\mu\gamma$

 \Box 239.2 pb⁻¹ of 2002 data sample (the same used in KLOE08 analysis), with photon at small angle : 0.87 Million $\mu\mu\gamma$ events (compared to 3.4 Million for $\pi\pi\gamma$)

□Careful work to achieve a control of ~1% in the muon selection, especially in the ρ region where ππγ/μμγ ~10. π/μ separation crosschecked in three different methods (M_{TRK} fit, Kinematic fit, cut on σ_{MTRK}) □μμγ (and ππγ) Efficiencies (Trk,Trg,PID) done on data □Excellent data/MC agreement for many kinematic variables: M_{TRK}, track and γ polar angle, etc...

μμγ cross section: data/MC comparison

Consistency check of Radiator function, Luminosity, etc...

G. Venanzoni - EPS Conference 23/07/11

KLOE11 result on $|F_{\pi}|^2$ and comp. with KLOE08 \int_{2}^{2}

preliminary

Theoretical predictions compared to the BNL result (2009)

•The latest inclusion of all e⁺e⁻ data gives a discrepancy btw a_{μ}^{SM} and a_{μ}^{EXP} of 3 to 4σ

•Remaining differences on $\sigma_{\pi\pi}$ btw different experiments (mainly KLOE/BaBar) to be clarified [Δa_{μ}^{EXP-SM} =2.4÷3.7 σ]

 (Reduced) discrepancy with τ data (new I. corr.,ee,τ data).
 JS11 claims to have solved it

Preliminary KLOE11 in agreement with previous KLOE measurements and confirms the 3σ discrepancy!

Conclusion

•During the last 10 years KLOE has performed a series of precision measurements with ISR which confirmed a 3σ discrepancy between a_{μ}^{SM} and the BNL measured value

•The published measurements (KLOE05, KLOE08, KLOE10) normalized to Bhabha events, have allowed to measure $a_{\mu}^{\pi\pi}$ in the region 0.1-0.95 GeV² (70% of a_{μ}^{HLO}) with 1.2% total error

- •A new (*preliminary*) measurement of $|F_{\pi}|^2$ from the $\pi\pi\gamma/\mu\mu\gamma$ ratio (based on 240 pb⁻¹) with 1.1% systematic error has been presented
- It doesn't rely on specific theoretical input (like luminosity and radiator function) and allows a stringent cross check of the published measurements with comparable systematic error

•Preliminary results show good agreement for $\mu\mu\gamma$ cross section with NLO QED calculation (PHOKHARA MC) and for $|F_{\pi}|^2$ with previous KLOE measurements

• $a_{\mu}^{\pi\pi}$ from $\pi\pi\gamma/\mu\mu\gamma$ ratio is in agreement with previous KLOE measurements and confirms the 3 σ discrepancy

Outlook

•We plan to publish the new measurement from the $\pi\pi\gamma/\mu\mu\gamma$ soon •Still more than 1.5 fb⁻¹ of KLOE data on tape. This would represent a ~4 improvement in statistics. We plan to analyse these data to improve $\sigma_{\pi\pi}$ (and maybe other channels) measurement.

Stay tuned!

SPARE SLIDES

Background:

Main backgrounds estimated from MC shapes fitted to data distribution in M_{Trk} ($\pi\pi\gamma/\mu\mu\gamma$, $\pi\pi\pi$, ee γ)

- Systematic error on $\mu\mu\gamma$ due to background~1% in the ρ peak

π/μ separation: control of $\pi\pi\gamma$ M_{TRK} tail

□A careful work has been done to achieve a control of ~1% in the muon selection, especially ~0.6 GeV² (ρ peak) where π/μ ~10.

□ ππγ % background to μμγ signal (M_{TRK}<115 MeV) is ~10% → ππγ M_{TRK} tail in the μμγ region must be well under control.

□ππγ M_{TRK} tail tuned using $φ \rightarrow \pi^+ \pi^- \pi^0$ control sample.

DExcellent agreement on M_{TRK} (ππγ and μμγ) distributions

π/μ separation: control of $\pi\pi\gamma$ M_{TRK} tail

□A careful work has been done to achieve a control of ~1% in the muon selection, especially ~0.6 GeV² (ρ peak) where π/μ ~10.

□ ππγ % background to μμγ signal (M_{TRK}<115 MeV) is ~10% → ππγ M_{TRK} tail in the μμγ region must be well under control.

□ππγ M_{TRK} tail tuned using $φ \rightarrow \pi^+ \pi^- \pi^0$ control sample.

□Excellent agreement on M_{TRK} (ππγ and μμγ) distributions

Cross check of π/μ separation

The π/μ separation has been crosschecked with two different (and independent) methods:

μμγ

 $\pi\pi$

eey

10

10

10

 \Box A kinematic fit, in the hypothesis of 2 body+1 γ (ISR) events.

 $\Box A$ cut on the quality of the fitted tracks, parametrized by $\sigma_{\rm MTRK}$

 \square π/μ separation obtained with these methods well in agreement with the standard one.

Efficiencies for µµγ

The efficiencies of $\mu\mu\gamma$ (and $\pi\pi\gamma$) for trigger, tracking, and PID have been carefully studied with data, using the single particle method and taking into account the kinematics by MC.

Differently from $\pi\pi\gamma$, where the 3π sample was used to get the data/MC corrections, for $\mu\mu\gamma$ there is no a direct control sample and we had used mmg itslef with lose selection criteria.

□All the efficiencies has been found to be above 96% with ~1% data/MC correction as maximum.

Particle factories (DAFNE, PEP-II, KEK-B) can measure hadronic cross sections as a function of the hadronic c.m. energy using initial state radiation (radiative return to energies below the collider energy \sqrt{s}).

The emission of a hard g in the bremsstrahlung process in the initial state reduces the energy available to produce the hadronic system in the e^+e^- collision.

Extracting $\sigma_{\pi\pi}$ and $|F_{\pi}|^2$ from $\pi\pi\gamma$ events

a) Via absolute Normalisation to Bhabha events (KLOE05,08,10):

1)
$$\frac{d\sigma_{\pi\pi\gamma(\gamma)}^{obs}}{dM_{\pi\pi}^{2}} = \frac{\Delta N_{Obs} - \Delta N_{Bkg}}{\Delta M_{\pi\pi}^{2}} \cdot \frac{1}{\varepsilon_{Sel}} \cdot \frac{1}{\int Ldt}$$

 $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ is obtained by subtracting background from observed event spectrum, divide by selection efficiencies, and *int. luminosity*:

2)
$$\sigma_{\pi\pi}(s) \approx s \frac{d\sigma^{obs}}{dM_{\pi\pi}^2} \cdot \frac{1}{H(s)}$$

Obtain $\sigma_{\pi\pi}$ from (ISR) - radiative cross section $ds_{\pi\pi\gamma(\gamma)}/dM^2$ via theoretical radiator function H(s):

$$\mathbf{3)} \quad \left| \left| \mathbf{F}_{\pi} \right|^2 = \frac{3s}{\pi \alpha^2 \beta_{\pi}^3} \sigma_{\pi\pi}(\mathbf{s}) \right|$$

Relation between $|F_{\pi}|^2$ and the cross section $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

b) Via bin-by-bin Normalisation to rad. Muon events (New measurement!)

Radiative Corrections

Radiator-Function H(s,s_p) (ISR):

- ISR-Process calculated at NLO-level PHOKHARA generator (H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC27,2003)

Precision: 0.5%

$$s \cdot \frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} = \sigma_{\pi\pi}(s_{\pi}) \times \mathsf{H}(\mathsf{s},\mathsf{s}_{\pi})$$

Radiative Corrections:

i) Bare Cross Section

divide by Vacuum Polarisation d(s)=(a(s)/a(0))²

→ from F. Jegerlehner

ii) FSR

Cross section \mathbf{s}_{pp} must be incl. for FSR for use in the dispersion integral of a_m

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\left(\end{array} \\
\end{array}$$
\left(\end{array} \\
\end{array} \\
\left(\end{array} \\
\end{array}
\left(\end{array} \\
\left(\end{array} \\
\end{array}

FSR corrections have to be taken into account in the efficiency eval. (Acceptance, M_{Trk}) and in the mapping $\mathbf{S}_{\pi} \rightarrow \mathbf{S}_{\gamma *}$

(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC33,2004)

SA Event Selection (KLOE08)

- a) 2 tracks with 50° < θ_{track} < 130°
- b) small angle (not detected) γ ($\theta_{\pi\pi} < 15^{\circ} \text{ or } > 165^{\circ}$)
 - \checkmark high statistics for ISR
 - \checkmark low relative FSR contribution
 - x 10² \checkmark suppressed $\phi \rightarrow \pi^+\pi^-\pi^0$ wrt the signal

kinematics: $\vec{p}_{\gamma} = \vec{p}_{miss} = -(\vec{p}_{+} + \vec{p}_{-})$

statistics: 240pb⁻¹ of 2002 data 3.1 Mill. Events between 0.35 and 0.95 GeV²

LA Event Selection (KLOE10)

2 pion tracks at large angles $50^\circ < \theta_p < 130^\circ$

Photons at large angles

 $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

- ✓ independent complementary analysis
 ✓ threshold region (2m_π)² accessible
 ✓ γ_{ISR} photon detected
 (4-momentum constraints)
- ✓ lower signal statistics
- ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- ✓ irreducible background from ϕ decays (ϕ → f₀ γ → $\pi\pi$ γ)

At least 1 photon with $50^{\circ} < \theta_g < 130^{\circ}$ and $E_a > 20$ MeV \rightarrow photon detected

Threshold region non-trivial

due to irreducible FSR-effects, which have to be estimated from MC using phenomenological models (interference effects unknown)

LA Event Selection (KLOE10)

2 pion tracks at large angles $50^{\circ} < \theta_{p} < 130^{\circ}$

Photons at large angles $50^\circ < \theta < 130^\circ$

- $50^\circ < \theta_\gamma < 130^\circ$
- ✓ independent complementary analysis ✓ threshold region $(2m_{\pi})^2$ accessible

✓γ_{ISR} photon detected

(4-momentum constraints)

- ✓ lower signal statistics
 ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- ✓ irreducible background from ϕ decays (ϕ → f₀ γ → $\pi\pi$ γ)

Use data sample taken at √s≅1000 MeV, 20 MeV below the f-peak

CMD and SND results compared to KLOE10:

Final State Radiation (FSR)

+

The presence of not factorizable diagrams (like the 2 photon exchange) not present in Phokhara could lead to deviaton respect to:

$$\sigma_{\pi\pi}^{0} = \frac{4\pi\alpha^{2}}{3s'}(1+2m_{\mu}^{2}/s')\beta_{\mu}\frac{\left(d\sigma_{\pi\pi\gamma}^{ISR+FSR}(\theta_{\Sigma}^{\pi\pi}<15^{\circ})/ds'\right)}{\left(d\sigma_{\mu\mu\gamma}^{ISR}(\theta_{\Sigma}^{\mu\mu}<15^{\circ})/ds'\right)} \cdot Corr(\theta_{\Sigma}^{I+FSR}/\theta_{\Sigma}^{ISR})$$

• For the $\pi\pi\gamma$ this has been tested *in our previous publication and a validity within* 0.2% was found (for pointlike pions)

•For $\mu\mu\gamma$, we can assume the same 0.2% as conservative estimate of this missing contribution in the passage from I+FSR to ISR (in our small angle region)

We take the combined error of 0.3% for the uncertainty on the rel. FSR contribution

List of systematic errors

	$\sigma_{\mu\mu\gamma}$	$\sigma_{\pi\pi\gamma}$ (Ref. [4])	$\sigma_{\pi\pi}^{bare}$ ratio	$ F_{\pi} ^2$ ratio
L3	0.1 %			
FILFO	negligible			
Bckg subtr.	M^2 dep. (Tab. 2)	M^2 dep. (Tab. 3)	M^2 dep.	. (Tab. 4)
$M_{ m TRK}$	0.4 %	0.2% 0.4 %		4 %
PID		negligible		
Tracking	M^2 dep. (Tab. 8)	0.3%	Ta	b. 9
Trigger	negligible	0.1%		
Unfolding	negligible	M^2 dep. (Tab. 3 of [4])		
Acceptance	M^2 dep. (Tab. 10)	M^2 dep. (Tab. 2 of [4])	M^2 dep.	(Tab. 11)
Luminosity	0.3%			-
FSR	negligible		0.3%	0.3%
Rad. H		-		
\sqrt{s} dep. of H		_		
Vac. Pol.		-		0.1% ([25])

SA

Table 12: List of systematic uncertainties for $\sigma_{\mu\mu\gamma}$, $\sigma_{\pi\pi\gamma}$ from SA analysis [4], $\sigma_{\pi\pi}$ (bare) and $|F_{\pi}|^2$ from the ratio.

Event selection

 Experimental challenge: Fight background from

$$- e^+e^- \rightarrow \mu^+\mu^- \gamma,$$

$$- e^+e^- \rightarrow e^+e^- \gamma$$

$$- \phi \rightarrow \pi^+\pi^-\pi^0$$

separated by means of kinematical cuts in *trackmass* M_{Trk} and the angle Ω between the photon and the missing momentum

 $\vec{p}_{\rm miss} = -(\vec{p}_+ + \vec{p}_-)$

To further clean the samples from radiative Bhabha events, a particle ID estimator for each charged track based on Calorimeter Information and Time-of-Flight is used.

37

Event Selection

 Experimental challenge: control backgrounds from

$$-\phi \rightarrow \pi^+ \pi^- \pi^0$$

$$-e^+e^- \rightarrow e^+e^- \gamma$$

 $-e^+e^- \rightarrow \mu^+\mu^- \gamma$, removed using kinematical cuts in *trackmass M_{Trk}* - M_{ππ}² plane

 M_{Trk} : defined by 4-momentum conservation assuming 2 charged particle (of same mass) and one γ in the final state

$$\left(\sqrt{s} - \sqrt{p_1^2 + M_{trk}^2} - \sqrt{p_2^2 + M_{trk}^2}\right)^2 - (p_1 + p_2)^2 = 0$$

To further clean the samples from radiative Bhabha events, we use a particle ID estimator (PID) for each charged track based on Calorimeter Information and Time-of-Flight. $\begin{array}{c}
200 \\
180 \\
\hline
180 \\
\hline
180 \\
\hline
180 \\
\hline
160 \\
\hline
120 \\
\hline
100 \\
\hline$

μ Tracking efficiency

Since for muons we don't have an control sample (like 3π for pions), we have refiltered M_{MISS} all 2002 data set (240 pb⁻¹) according to: (MeV)

- 1) a "good" tagging track extrapolating back to the IP, which satisfies the trigger associated to a cluster with LogrL>0, 1 and MLP>0.7
- 2) 1 neutral prompt clusters not associated to the tagging track with E>50 MeV. A constraint on the photon energy and time to further clean the sample, and improve missing momentum and energy
- 3) The tagging track must have p > 450 MeV (to reject $\pi^+\pi^-\pi^0$ events), the *candidate* track must have mass (built from 4 momentum conservation) 50 < M_{miss} < 130 MeV

Luminosity:

KLOE measures L with Bhabha scattering

55° < θ < 125° acollinearity < 9° p ≥ 400 MeV

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

F. Ambrosino et al. (KLOE Coll.) **Eur.Phys.J.C47:589-596,2006**

generator used for σ_{eff} BABAYAGA (Pavia group):

C. M.C. Calame et al., NPB758 (2006) 22

new version (BABAYAGA@NLO) gives 0.7% decrease in cross section, and better accuracy: 0.1%

Systematics on Luminosity		
Theory	0.1 %	
Experiment	0.3 %	
TOTAL 0.1 % th \oplus 0.3% exp = 0.3%		

Luminosity:

Extracting $|F_{\pi}|^2$ by π/μ ratio:

Example of data/MC comparison for $\mu\mu\gamma$ and $\pi\pi\gamma$: momentum components of μ and π

3

