CMB power spectrum results from the South Pole Telescope

Christian Reichardt EPS-HEP, July 22, 2011

Photo: Keith Vanderlinde

Outline

The South Pole Telescope & survey
Primary CMB results
SPT cluster cosmology

Overview

The South Pole Telescope (SPT):

- 10 meter telescope 1 arcmin resolution at 150 GHz
- 1 deg FOV

Receiver

cryostat

(250 mK)

DO

- 960 feed-horn coupled, backgroundlimited detectors
- Observe simultaneously in 3 bands 95, 150, 220 GHz with modular focal plane

Secondary

(10 K)

mirror cryostat

Overview

Funded by NSF

The South Pole Telescope (SPT):

- 10 meter telescope 1 arcmin resolution at 150 GHz
- 1 deg FOV
- 960 feed-horn coupled, backgroundlimited detectors
- Observe simultaneously in 3 bands 95, 150, 220 GHz - with modular focal plane

SPT Focal Plane

Modular design: 960 pixels fabricated on six silicon wafers

 Incoming radiation is:
 Low-pass filtered (capacitive mesh)
 Coupled to waveguide via smoothwalled conical feedhorns
 High-pass filtered by circular waveguide
 Confined to an integrating cavity
 Absorbed by detector

Why the South Pole?

- Atmospheric transparency and stability:
 - Extremely dry and cold (average winter temperature below -60 C).
 - High altitude ~ 10,500 feet.
 - Sun below horizon for 6 months.
- Unique geographical location:
 - Observe the clearest views through the Galaxy 24/7/52 "relentless observing"
 - Clean horizon.
- Excellent support from existing research station.

SPT Heroes Gallery

Dana Hrubes and

Daniel Luong-Van

2010 AND 2011!!

315

Zak Staniszewski 2007 Ross Williamson and Erik Shirokoff 2009

Steve Padin 2007

The SPT Survey

- Finish 3-frequency survey of 6% of the sky this November
- Area chosen based on galactic dust and observable elevations
- Active optical & X-ray followup program
- Full DES coverage

What a map looks like

Full survey: 2500 deg² Noise: 40, 18, 65 μ K-arcmin at 95, 150, 220 GHz

Zoom in on 150 GHz map ~4 deg² of actual data

CMB anisotropies and foregrounds

Galaxy clusters

Point sources

A Brief History of the Universe

A dark energy dominated Universe

Maps to bandpowers

Beam + Calibration + 800 deg² Map

Pseudo-C_I methods

Direct Fourier transform:

$$\begin{split} \tilde{a}_{\ell m}^{i} &= \int d\hat{n} \left[\Delta T^{i}(\hat{n}) W(\hat{n}) \right] Y_{\ell m}(\hat{n}) \\ \tilde{C}_{\ell}^{ii} &= \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |\tilde{a}_{\ell m}^{i}|^{2} \end{split}$$

Need to explicitly account for: •Experimental beam shape

 $< \tilde{C}_{\ell}^{ii} > = B_{\ell}^2 < C_{\ell'} >$

Direct Fourier transform:

$$\begin{split} \tilde{a}_{\ell m}^{i} &= \int d\hat{n} \left[\Delta T^{i}(\hat{n}) W(\hat{n}) \right] Y_{\ell m}(\hat{n}) \\ \tilde{C}_{\ell}^{ii} &= \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |\tilde{a}_{\ell m}^{i}|^{2} \end{split}$$

Need to explicitly account for:Experimental beam shapeFiltering of timestream data

 $< \tilde{C}_{\ell}^{ii} > = F_{\ell} B_{\ell}^2 < C_{\ell'} >$

Direct Fourier transform:

$$\begin{split} \tilde{a}_{\ell m}^{i} &= \int d\hat{n} \left[\Delta T^{i}(\hat{n}) W(\hat{n}) \right] Y_{\ell m}(\hat{n}) \\ \tilde{C}_{\ell}^{ii} &= \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |\tilde{a}_{\ell m}^{i}|^{2} \end{split}$$

Need to explicitly account for:Experimental beam shapeFiltering of timestream dataMasking for unwanted sources

 $< \tilde{C}_{\ell}^{ii} > = \sum M_{\ell\ell'} [W] F_{\ell'} B_{\ell'}^2 < C_{\ell'} >$

Direct Fourier transform:

$$\begin{split} \tilde{a}_{\ell m}^{i} &= \int d\hat{n} \left[\Delta T^{i}(\hat{n}) W(\hat{n}) \right] Y_{\ell m}(\hat{n}) \\ \tilde{C}_{\ell}^{ii} &= \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |\tilde{a}_{\ell m}^{i}|^{2} \end{split}$$

Need to explicitly account for:
Experimental beam shape
Filtering of timestream data
Masking for unwanted sources
Biases introduced by noise

 $< \tilde{C}_{\ell}^{ii} > = \sum M_{\ell\ell'} [W] F_{\ell'} B_{\ell'}^2 < C_{\ell'} > + < N_{\ell} >$

SPT - both primary & secondary CMB

SPT "low ell"

(dominated by primary CMB anisotropy)

Primary CMB

 Reduces uncertainties by >2 across damping tail

SPT modestly improves 6 "vanilla" cosmo parameters

ns = 0.9663 + - 0.0112 (3.0-sigma from 1.0)

CMB Lensing

Introduce **A_lens** which smoothly scales lensing potential power spectrum:

$$C_{\ell}^{\psi} \to A_{\text{lens}} C_{\ell}^{\psi}$$

(lensing smooths out acoustic peaks)

- $(A_{lens})^{0.65} = 0.94 + 0.15$
- Consistent with $A_{lens} = 1$.
- 5-6 σ rejection of A_{lens} = 0.

 Predict 30 σ detection for full spt survey & lensing analysis. Constrain neutrino mass, early dark energy, modified gravity

Extensions beyond LCDM

- Inflation Running and Tensor modes (normally=0, allow to be free)
- **Primordial Helium** (normally determined by BBN, a tight function of $\Omega_b h^2$. Allow to be free).
- Number of relativistic species (think neutrinos) (normally 3.046, allow to be free)

Initial conditions

- Tightest constraints on tensor-scalar ratio (r), running and n_s
- r<0.21 (95%), SPT+WMAP7
- r<0.17 (95%), SPT+WMAP7+H0+BAO

Primordial Helium

• Yp = 0.296 +/- 0.030 (SPT+WMAP7)

Number of Relativistic Species

- Neff = 3.85 +/- 0.62 (SPT+WMAP7)
- Neff = 3.86 +/- 0.42 (SPT+WMAP7+H0+BAO)

Damping scale

θ_d/θ_s

$$\frac{\theta_d}{\theta_s} \simeq \frac{0.24(1 + 0.227 \text{ N}_{\text{eff}})^{0.22}}{\sqrt{1 - Y_p}}$$

Hou et al. 2011

Number of neutrinos

N_{eff}: > 2.7 (WMAP)
 3.85 ± 0.62 (WMAP+SPT)

Tension with measures of structure

Data prefers N_{eff} > 3 (1.8-sigma)

Such models need high σ_8

• N_{eff}: 3.42 ± 0.34 (WMAP+SPT+BAO+Clusters)

Hold on - massive neutrino's

 Can have a lower and "more reasonable" σ₈, like 0.8, if you allow for Sum of m_{nu} ~ 0.3 eV.

Allowing for (not very) massive neutrinos decorrelates N_{eff} and σ_8 , at no expense to N_{eff} constraint.

Take Away #1

 SPT has mapped out the CMB damping tail, in order to detect gravitational lensing, and measure the number of relativistic species (among other things).

Read more in astro-ph/1105.3182

Back to the SPT map

Counting dark spots (galaxy clusters) to probe dark energy

Structure as viewed by the CMB

Sunyaev-Zel'dovich Effect: CMB photons provide a backlight for structure in the universe.

 Thermal: 1-2% of CMB photons traversing galaxy clusters are inverse Compton scattered to higher energy

• **Kinetic**: Doppler shift from motion of cluster

SZE Surveys

Use SZE as a Probe of Structure Formation and to provide nearly unbiased cluster sample

Same range of X-ray surface brightness and SZ decrement in all three insets.

SZE Flux :
$$S \propto \frac{1}{d_A(z)^2} \int n_e T_e dV$$

Surface brightness independent of redshift

 Total flux proportional to the total thermal energy of cluster (expected to be good mass proxy)

Cosmology with Galaxy clusters

Cluster Abundance, dN/dz

Cluster dN/dZ with Mass > M

Chris Greer

Cosmology with Galaxy clusters

Cluster Abundance, dN/dz

 $\rho(z) = \rho_0 (1+z)^{3(1+w)}$ where w = ρ/p is eqn. of state

SPT cluster sample

Redshifts

Mass vs. Redshift

- Over 300 optically confirmed candidates
 - -~80% new discoveries
 - Confirmed 95% purity at >5 sigma
- High redshift, <z> ~0.5 0.6
- M₅₀₀(z=0.6) = > 3e14 M_o / h₇₀ (lower at higher z)

Early results from SPT

Vanderlinde+, 2010

- Only 21 clusters!
- Constraints limited by mass calibration (but early days)

SPT significance as a Mass Proxy

- Y_{sz} should have low (~7%) scatter with mass (Kravstov, Vikhlinin, Nagai 2006)
- However, poor constraints on cluster amplitude and angular size with low significance detections
- Signal-to-noise in spatial filtered map is mass proxy (Vanderlinde et al 2010)
- Use simulation based priors on this scaling relation (~25% one-sigma prior on mass calibration)

Multi-wavelength Observations: Mass Calibration

SZ-mass scaling relation needs precise and unbiased mass calibration AT ALL REDSHIFTS.

- Multi-wavelength mass calibration campaign, including:
- X-ray with Chandra and XMM (PI: Benson, Andersson, Vikhlinin)
- Weak lensing from Magellan (0.3 < z < 0.6) and HST (z > 0.6) (PI: Stubbs, High, Hoekstra)
- Dynamical masses from NOAO 3year survey on Gemini (0.3<z< 0.8); VLT at z > 0.8

CHANDRA X-RAY OBSERVATORY

Hubble

SPT Cosmological Constraints with X-ray

 Developing full cosmological MCMC to jointly fit cosmology, Yx-M, ξ-M relations, using priors from Vikhlinin et al (2009)

•X-ray measurements reduce mass uncertainty from 25% to 10%

• Improves 21 cluster cosmological constraints on σ_8 by ~50% and *w* by ~30%

Future constraints with SPT+Xray

SPT 2500 deg² survey with ~450 clusters at 5 sigma X-ray based mass calibration with 5% mean from 80 clusters - Chandra XVP

Constrain σ_8 to 1.2%; w to 4.6%

Independent of geometric constraints (SN/BAO) Note: 3.3% systematic uncertainty in w due to mass calibration

Take Away #2

 SPT has discovered hundreds of real, massive clusters. Observations underway will accurately determine the mass calibration at all redshifts, enabling strong constraints on dark energy.

SPTPol: CMB polarization

- Building 760 pixel polarimeter for SPT
- Scheduled to deploy this winter
- 3x mapping speed of current receiver

The End