COMPASS results on gluon polarisation

Luís Silva
LIP – Lisbon
lsilva@lip.pt
22 Jul 2011

On behalf of the COMPASS Collaboration

Outline:

• Brief Motivation
• High p_T and Open Charm analyses
• $\Delta G/G$ results
• Summary and Conclusion
THE COMPASS EXPERIMENT

Beam: $2 \cdot 10^8 \mu^+$/spill
Luminosity: $\sim 5 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
Beam polarisation: 80%
Beam momentum: 160 GeV/c

Data taken: 2002 - 2011, ...

~250 physicists
25 institutes
11 countries
The COMPASS Spectrometer
Common Muon and Proton Apparatus for Structure and Spectroscopy

Two staged spectrometer:
LAS and SAS
Polarised beam and target

Acceptance:
70 mrad (2002-04)
180 mrad (2006)
About 350 detector planes
Track reconstruction $p > 0.5$ GeV/c

NIM A577 (2007) 455

160 GeV μ^+

Trackers
Magnets
RICH
Electromagnetic Calorimeters
Hadronic Calorimeters
Absorbers
Target
The Nucleon Spin

\[S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L \]

In 1988 EMC measured
\[\Delta \Sigma = 0.12 \pm 0.17 \] (Phys.Lett.B206,364)

A recent result, including COMPASS, gives:
\[\Delta \Sigma = 0.30 \pm 0.01_{\text{stat.}} \pm 0.02_{\text{evol.}} \] Phys.Lett.B647,8

Partons
Orbital Angular Momenta

Quarks
Gluons

Well known!

Poorly known
Exploratory and discovery stage.
Some experiments and data might give hints.

COMPASS, HERMES, CLAS, STAR, PHOENIX

Future!
GPDs
Direct measurement of $\Delta G/G$

To select this process there are two methods:

- **High transverse momentum hadrons** ($Q^2 < 1$ and $Q^2 > 1$ (GeV)2)
 - Smiley face: High statistics.
 - Sad face: Physical background: strongly model dependent, requires a very good agreement between MC and Data.

- **Open-charm meson** (D mesons)
 - Smiley face: Provides the purest sample of PGF events, almost free from background contamination. Small dependence on MC.
 - Sad face: Low statistics.

Photon-gluon fusion process (PGF)
Direct measurement of $\Delta G/G$

Photon-gluon fusion process (PGF)

$$\gamma^* g \rightarrow q \bar{q}$$

Experiments with polarised beam and target are sensitive to gluon helicity

$$A_{PGF} = \frac{N_{PGF}^{\rightarrow} - N_{PGF}^{\leftarrow}}{N_{PGF}^{\rightarrow} + N_{PGF}^{\leftarrow}}$$

$$\Rightarrow \Delta G/G$$

Experiments with polarised beam and target are sensitive to gluon helicity
High p_T Analysis

$$A_{LL}^{2h}(x) = \frac{\Delta G}{G}(x_g) a_{LL}^{PGF} \frac{\sigma^{PGF}}{\sigma^{Tot}} + A_{1}^{LO}(x_C) a_{LL}^{C} \frac{\sigma^{C}}{\sigma^{Tot}} + A_{1}^{LO}(x_{Bj}) D \frac{\sigma^{LO}}{\sigma^{Tot}}$$

A_{1}^{LO} : estimated by an inclusive sample

Final formula for the gluon polarisation

$$\frac{\Delta G}{G}(x_g^{av}) = \frac{1}{\beta} \left[A_{LL}^{2h}(x_{Bj}) + A_{corr} \right]$$

$$\beta = a_{LL}^{PGF} R_{PGF} - a_{LL}^{PGF, incl} R_{PGF}^{incl} \frac{R_{LO}}{R_{LO}^{incl}} - a_{LL}^{PGF, incl} \frac{R_{C} R_{PGF}^{incl}}{R_{LO}^{incl}} a_{LL}^{C} D$$

$$A_{corr} = - \left(A_{1}(x_{Bj}) D R_{LO}^{incl} - A_{1}(x_C) \beta_1 + A_{1}(x_C') \beta_2 \right)$$

- A_{LL}^{2h} : measured from the two hadron sample.
- a_{LL}^{i} and R_{i} : estimated from MC and parametrised using a Neural Network.

EPS-HEP 2011, Grenoble
Luís Silva (lsilva@lip.pt)

22 Jul 2011 7/18
MC Simulation and Neural Network

Data-MC comparison: Q^2, p_T and Hadron Multiplicities.

- Full chain of MC has been used: Generator (LEPTO) + Apparatus Simulation (GEANT) + Reconstruction Program.
- PDF: MSTW2008LO.
- High p_T sample:
 - MC with parton shower ON.
 - A new tuning was performed to improve the hadron description.

Data

Training and Parametrisation

Event By Event

MC

NN

Extraction

$\Delta G/G$
High p_T Results, $Q^2 > 1 \, (GeV/c)^2$

$\Delta g/g$

COMPASS, high p_T, $Q^2>1 \, (GeV/c)^2$, prel., 02-06

Preliminary
High p_T Results, $Q^2 > 1 \text{ (GeV/c)}^2$

The whole statistics was divided, for the first time, resulting in 3 independent measurements, for $Q^2 > 1 \text{ GeV/c}$.
High \(p_T \) Analysis, \(Q^2 < 1 \) (GeV/c)^2

2002-2004 Preliminary:
\[\Delta G/G = 0.016 \pm 0.058 \text{(stat)} \pm 0.055 \text{(syst)} \]

2002-2003 Published:
\[\Delta G/G = 0.024 \pm 0.089 \text{(stat)} \pm 0.057 \text{(syst)} \]

\[\text{Phys. Lett. B 633,25} \]
Open Charm

- The relation between the number of reconstructed D^0 (for each target cell configuration) and $\Delta G/G$ is given by:

$$N_t = a \phi n (S+B) \left(1 + f P_T P_\mu \left[a_{LL} \frac{S}{S+B} \frac{\Delta G}{G} + D \frac{B}{S+B} A^{bg} \right] \right), \quad t=(u,d,u',d')$$

acceptance, muon flux, number of target nucleons

- Each equation is weighted with a signal weight $w_s = f P_m a_{LL} S/(S+B)$ and also with a background weight $w_B = f P_m D B/(S+B)$:

8 equations with 7 unknowns: $\Delta G/G$, A^{bg} + 5 independent $\alpha = (a \phi n)$ factors

The system is solved by a χ^2 minimisation
Neural Network parametrisation

- Two real data samples (with the same cuts applied) are compared by a Neural Network (using some kinematic variables as a learning vector):
 - **Signal model**
 \[g_{cc} = K^+\pi^-\pi^- + K^-\pi^+\pi^+ \]
 \((D^0 \text{ spectrum: signal + background})\)
 - **Background model**
 \[w_{cc} = K^+\pi^-\pi^- + K^-\pi^-\pi^+ \]
 \((no \ D^0 \text{ is allowed})\)

- If the background model is **good enough**: The Neural Network is able to distinguish the signal from the combinatorial background on a event by event basis (inside \(g_{cc} \))

\[\delta \left(\frac{\Delta G}{G} \right) \propto \frac{1}{\text{FOM}} \]
ΔG/G Results (LO)

- COMPASS, high p_T, $Q^2 > 1$ (GeV/c)2, prel., 02-06
- COMPASS, high p_T, $Q^2 < 1$ (GeV/c)2, prel., 02-04
- COMPASS, open charm, prel., 02-07
- SMC, high p_T, $Q^2 > 1$ (GeV/c)2
- HERMES, high p_T, all Q^2

Preliminary
\[\frac{\Delta G}{G} = -0.08 \pm 0.21_{\text{stat}} \pm 0.08_{\text{syst}} \quad \langle x_g \rangle = 0.11^{+0.11}_{-0.05}, \quad \langle \mu^2 \rangle = 13 \text{ (GeV/c)}^2 \]
NLO corrections for Open Charm analysis

NLO corrections to the analysing power a_{LL}

LO: PGF

NLO: bg

virtual corrections

NLO: PGF

gluon bremsstrahlung corrections

EPS-HEP 2011, Grenoble
Luís Silva
lsilva@lip.pt
$\Delta G/G = -0.20 \pm 0.21 \pm 0.08$ (syst) \hspace{1cm} \langle x_g \rangle = 0.28^{+0.19}_{-0.10}, \hspace{1cm} \langle \mu^2 \rangle = 13 \text{ (GeV/c)}^2$

Preliminary: theoretical uncertainties still under study (a_{LL})
Summary and Conclusion

Summary:
- The direct measurement methods used in COMPASS experiment were explained.
- Several gluon polarisations results presented are in full agreement among themselves.

Conclusion:
- All measurements of $\Delta G/G$ are compatible with zero, around $X_g \sim 0.1$
- The ΔG seems to be a small contribution.
- The missing contribution could be in L_g partons.
- COMPASS-II program foresees to measure L_g partons via GPDs.
Spares
D⁰ invariant mass spectra: 2002-2007 data

- **D⁰ → K⁺π⁻**
 - Events / 10 MeV·c²
 - N(D⁰) = 62000

- **D* → D⁰π⁺ → K⁺π⁻π⁻**
 - Events / 10 MeV·c²
 - RICH sub-threshold Kaons
 - N(D⁰) = 3050

- **D* → D⁰π⁺ → K⁺π⁻π⁻π⁻**
 - Events / 10 MeV·c²
 - N(D⁰) = 4050

- **D⁰ → K⁺π⁰**
 - Events / 10 MeV·c²
 - N(D⁰) = 8500

Number of D⁰:

- **Total** = 90600
- **⁶LiD** = 65600
- **NH₃** = 25000
Monte Carlo Simulation

This analysis uses information from the MC, thus a strong effort and care to ensure that the MC simulation describes as good as possible the data was undertaken.

Two MC samples were used in the analysis: high p_T and inclusive samples.

- Full chain of MC has been used: Generator (LEPTO) + Apparatus Simulation (GEANT) + Reconstruction Program.
- PDF: MSTW2008LO.
- High p_T sample:
 - MC with parton shower ON has been used in the analysis.
 - A new tuning was performed to improve the hadron description.
MC Tuning

• The purpose of the **MC tuning** is to correct the shapes of the **hadron variables** (momenta) and **fragmentation** (multiplicity).

• In **LEPTO** this can be **achieved** by changing **JETSET** parameters:

<table>
<thead>
<tr>
<th>PARJ(21)</th>
<th>PARJ(23)</th>
<th>PARJ(24)</th>
<th>PARJ(41)</th>
<th>PARJ(42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse momentum of the hadron fragmentation</td>
<td></td>
<td></td>
<td></td>
<td>Fragmentation function</td>
</tr>
</tbody>
</table>

• These **parameters** can be divided into **two sets** regarding the component of the **trajectory** of the particles: **Transverse** and **longitudinal** variable components.

• The sets can be **tuned independently**.

⇒ The tuning improves substantially the Data-MC agreement.
Monte Carlo Simulation

\[f(z) \propto \frac{1}{2} (1 - z)^a \exp \left(-\frac{b m_T^2}{z} \right) \]

\[a = \text{PARJ}(41) \]
\[b = \text{PARJ}(42) \]

<table>
<thead>
<tr>
<th>PARJ(21)</th>
<th>PARJ(23)</th>
<th>PARJ(24)</th>
<th>PARJ(41)</th>
<th>PARJ(42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34</td>
<td>0.04</td>
<td>2.8</td>
<td>0.025</td>
<td>0.075</td>
</tr>
<tr>
<td>0.36</td>
<td>0.01</td>
<td>2.0</td>
<td>0.3</td>
<td>0.58</td>
</tr>
</tbody>
</table>

COMPASS new tuning
LEPTO default tuning

Transverse momentum of the hadron fragmentation

Fragmentation function
Data – Monte Carlo comparison

- COMAPSS High p_T
- $Q^2 > 1$ (GeV/c)^2

Preliminary

- COMPASS High p_T
- $Q^2 > (GeV/c)^2$

Preliminary

EPS-HEP 2011, Grenoble

Luís Silva (lsilva@lip.pt)
Data – Monte Carlo comparison

high-\(p_T\) sample: hadron variables (\(p_{T1}\), \(p_{T2}\) and \(\sum p_T^2\))
Data – Monte Carlo comparison

high-p_T sample: hadron variables (p_1, p_2 and multiplicity)
Weighted method

A Neural Network is used to assign to each event a probability to be originated from one of the three processes (LO, PGF or Compton).

- A **MC** sample is used to train the Neural Network (NN).
- A parametrisation is constructed for all variables involved in the weight.
- A **Data** sample is weighted on an event-by-event basis.

Optimal usage of the data sample statistics
Weighted method

- A weight is applied on event-by-event basis:

\[W = f D P_b \beta \]

where \(\beta \) is a factor depending on \(a^i_{LL} \) and \(R^i \)

- Therefore for every event we have to know:

\[R_{PGF}, R_C, R_{LO}, R_{PGF}^{incl}, R_C^{incl}, R_{LO}^{incl}, \]

\[a_{LL}^{PGF}, a_{LL}^C, a_{LL}^{PGF,incl}, a_{LL}^{C,incl}, \]

\[\chi_C, \chi_G, \]

\[f, D, P_b \]

\(f, D, P_b \) are directly obtained from data.
The all the others variables have to be estimated/parametrised.
Example: Stability plots for NN

We parametrise the R^i fractions as probabilities.
Results

\[\frac{\Delta G}{G} = 0.125 \pm 0.060 \pm 0.063 \quad x_c = 0.09^{+0.08}_{-0.04} \quad \langle \mu^2 \rangle = 3.4 \text{ (GeV/c)}^2 \]
Systematic Uncertainties

<table>
<thead>
<tr>
<th>Sources of Systematic Uncertainties</th>
<th>$\delta(\Delta G/G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High pT</td>
</tr>
<tr>
<td>MC Simulation</td>
<td>0.05</td>
</tr>
<tr>
<td>Formula Simplification</td>
<td>0.04</td>
</tr>
<tr>
<td>False Asymmetries</td>
<td>0.02 0.08</td>
</tr>
<tr>
<td>A_1 Parametrisation</td>
<td>0.02</td>
</tr>
<tr>
<td>NN Parametrisation</td>
<td>0.01</td>
</tr>
<tr>
<td>P_B, P_T, f</td>
<td>0.004 0.01</td>
</tr>
<tr>
<td>a_{LL}</td>
<td></td>
</tr>
<tr>
<td>$s/(s+b)$</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.06 0.08</td>
</tr>
</tbody>
</table>
S/(S+B): Obtaining final probabilities for a D^0 candidate

- Events with small $S/(S+B)_{\text{NN}}$
 - Mostly combinatorial background is selected

$S/(S+B)$ is obtained from a fit inside this bins (correcting with the NN parameterisation)

- Events with large $S/(S+B)_{\text{NN}}$
 - Mostly Open Charm are selected

$$\delta \left(\frac{\Delta G}{G} \right) \propto \frac{1}{\text{FOM}}$$
Neural Network qualification of events

- **Two real data samples** (with the same cuts applied) are compared by a Neural Network (using some kinematic variables as a learning vector):
 - **Signal model** \rightarrow $\text{gcc} = K^+\pi^-\pi^- + K^-\pi^+\pi^+$ (*D^0 spectrum: signal + background*)
 - **Background model** \rightarrow $\text{wcc} = K^+\pi^+\pi^- + K^-\pi^-\pi^+$ (*no D^0 is allowed*)

- **If the background model is good enough**: The Neural Network is able to distinguish the signal from the combinatorial background on a event by event basis (inside gcc)

Example of a good learning variable
Analysing power (muon-gluon asymmetry a_{LL})

- a_{LL} is dependent on the full knowledge of the partonic kinematics:

$$a_{LL} = \frac{\Delta \sigma^{PGF}}{\sigma_{PGF}}(y, Q^2, x_g, z_C, \phi)$$

Can't be experimentally obtained: only one charmed meson is reconstructed

- a_{LL} is obtained from Monte-Carlo (in LO), to serve as input for a Neural Network parameterisation on some reconstructed kinematical variables: y, x_{Bj}, Q^2, z_D and p_T

Parameterised a_{LL} shows a strong correlation with the generated one (using AROMA)
Comparison of a_{LL}(LO) with a_{LL}(NLO)

- The AROMA generator is used to simulate the fase space for the NLO (PS on) / LO (PS off) calculations of a_{LL}. The resulting D^0 mesons are reconstructed in the COMPASS spectrometer like real events. The respective a_{LL} distributions are:

![Analysing power distributions](image)

- NLO
- LO