

Measurements of diboson production in lepton plus jets decays at the Tevatron

Thibault Guillemin,

Laboratoire de l'Accélérateur Linéaire d'Orsay

On behalf of the CDF and D0 collaborations

EPS conference 2011

Grenoble, July 21

Physics goals

- Diboson physics at hadron colliders
 interesting by itself: precise cross-section predictions in the SM (NLO), new physics search via TGC enhancement,...
- WW, WZ and ZZ cross sections
- ➔ all measured in leptonic final states
- In the last years, interest turned to the lepton+jets decays
- exact same topology as the Higgs boson associated production

In this presentation: focus only on the leptons+jets decays

Tevatron: pp̄ Collisions collider

- E(c.m.) = 1.96 TeV
- average luminosity : ~1-1.5 1032 cm-2.s-1
- dataset: ~8 fb⁻¹ available for analysis (expect ~10 fb⁻¹ by end of September 2011)

2/12

Thibault Guillemin

Past results

3 published results

 Evidence of WW and WZ Production with lepton +jets Final States in pp̄ Collisions at √s=1.96 TeV
 [Phys. Rev. Lett. 102, 161801 (2009)]

4.4 σ for *WW+WZ*

 First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider
 [Phys. Rev. Lett. 103, 091803 (2009)]

5.3 σ for *WW+WZ+ZZ*

 Measurement of the WW+WZ Production Cross section using the Lepton+jets final state at CDF II
 [Phys.Rev.Lett. 104, 101801 (2010)]

The ultimate low mass Higgs benchmark at the Tevatron

Let's replace the Higgs boson by our well-known Z boson

WZ→*lvbb*: σ = 105 fb *ZZ*→*vvbb*: σ = 81 fb *ZZ*→*llbb*: σ = 27 fb **Total VZ: 213 fb**

 $\sigma(VZ \rightarrow leptons+bb) \sim 5 \sigma(VH[115] \rightarrow leptons+bb)$

But more challenging *WW* background in the *Z* case \rightarrow dijet mass resolution too large to distinguish the hadronic decays of *W* and *Z*

The observation of this process is the last milestone to demonstrate the Tevatron capability to observe the Higgs in the *bb* channel

3 preliminary results

 \rightarrow all these new results consider *b*-tagged jets in the final state

5/12

Thibault Guillemin

<u>Selection</u>: 2 leptons (electron/muon, 20 GeV), 76<M_{*ll*}<106 GeV and at least 2 jets (20 GeV)

- Define three samples: a heavy-flavor tagged sample, a light-flavor tagged sample and an untagged sample
- Z+jets background shape adjusted using a modified jet energy scale for gluon jets (correction derived from the Z-jet p_T balance)

Yields	no-tag	LF-tag	HF-tag
Signal	80	87	16
Backg.	5690	3600	770
S/√B	1.1	1.5	0.6

The final discriminant used is the dijet invariant mass: combination of three samples

- Distributions after a global fit of the background normalizations and of the systematic uncertainties
- Sensitivity not yet sufficient to observe the signal

→ expected limit: 2.6 σ_{SM}

Selection: 1 lepton (electron/muon, 20 GeV), MET>20 GeV and exactly 2 jets (20 GeV)

Background models

Rejection of the multijet background using a multivariate discriminant
 → R_B~90% / ε_S~95%

 W + LF jets: normalization in the tagged samples from the pretag sample using mistag-rates derived from data

Other backgrounds extracted directly from simulation

Yields	1-tag	2-tag	
Signal	215	11	In 1-tag: WW ~74% of the signal
Backg.	5514	396	In 2-tag: WZ ~88% of the signal
S/√B	2.9	0.6	

Most of the sensitivity of this search comes from the W decay into a charm-strange quark pair

The final discriminant used is the dijet invariant mass

→ combination of four samples: central leptons/non-central muon, 1-tag/2-tag

LLR for the B-only and S+B hypotheses

 $WW+WZ \rightarrow lv + HF$ jets observed with a significance of 3.0 S.D. from the **B-only hypothesis**

 $\sigma(WW + WZ) = 1.1^{+0.3}_{-0.4} \cdot \sigma_{SM}$

Bayesian posterior

<u>Selection</u>: high missing transverse energy (40 GeV) and exactly 2 jets acoplanar (20 GeV) A lepton veto is applied to keep orthogonality with the similar search in the *lvbb* channel but important *WZ* contribution from events with a non-identified lepton

This analysis is a copy of the analogous low mass Higgs search in the same final state: the only difference is the signal used for the training of the final discriminant, *VZ* instead of *VH*

Control samples are used to validate and improve the background modeling:

- multijet control sample (loosening of the MET cut)
- electroweak control sample (inversion of the isolated muon veto)

Example: validation of the trigger simulation and of the *b*-tagging algorithms in the electroweak control sample

Relatively loose tagging requirements to define the 1-tag/2-tag samples but full *b*-tag output injected in the final discriminant

WZ+ZZ search in MET + HF jets (3/3)

	11/12
J	Thibault Guillemin

Yields	1-tag	2-tag
Signal	252	77
Backg.	18883	2725
S/√B	1.8	1.5

Final discriminants in the 1-tag and 2-tag samples after a global fit to the data in the S+B hypothesis with marginalization of the systematic uncertainties

WZ+ZZ→MET+HF jets observed with a significance of 2.8 S.D. from the B-only hypothesis (1.9 S.D. expected)

Cross-section measurement: $\sigma(WZ+ZZ)_{mes} = 6.9 \pm 2.2 \text{ pb}$ $\sigma(WZ+ZZ)_{th} = 4.6 \text{ pb}$

3 preliminary results presented

• WZ+ZZ search in dilepton plus jets

→ expected limit: 2.6 σ_{SM}

- WW+WZ search in lepton-neutrino plus heavy-flavor jets
 production observed with a significance of 3.0 S.D. from the B-only hypothesis
- WZ+ZZ search in missing transverse energy plus heavy-flavor jets

➔ production observed with a significance of 2.8 S.D. from the B-only hypothesis

In preparation: a Tevatron combination for the WZ+ZZ search in lepton plus heavy-flavor jets

