Measurements of diboson production in lepton plus jets decays at the Tevatron

Thibault Guillemin,
Laboratoire de l’Accélérateur Linéaire d’Orsay
On behalf of the CDF and D0 collaborations

EPS conference 2011
Grenoble, July 21
Physics goals

- Diboson physics at hadron colliders ➔ interesting by itself: precise cross-section predictions in the SM (NLO), new physics search via TGC enhancement,…
 - WW, WZ and ZZ cross sections ➔ all measured in leptonic final states
 - In the last years, interest turned to the lepton+jets decays ➔ exact same topology as the Higgs boson associated production

In this presentation: focus only on the leptons+jets decays

Tevatron: $p\bar{p}$ Collisions collider

- $E_{\text{c.m.}} = 1.96$ TeV
- average luminosity: $\sim 1 - 1.5 \times 10^{32} \text{ cm}^{-2}\cdot\text{s}^{-1}$
- dataset: $\sim 8 \text{ fb}^{-1}$ available for analysis (expect $\sim 10 \text{ fb}^{-1}$ by end of September 2011)
3 published results

- Evidence of WW and WZ Production with lepton +jets Final States in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV
 [Phys. Rev. Lett. 102, 161801 (2009)]

 4.4σ for WW+WZ

- First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

 5.3σ for WW+WZ+ZZ

- Measurement of the WW+WZ Production Cross section using the Lepton+jets final state at CDF II

 5.3σ for WW+WZ
The ultimate low mass Higgs benchmark at the Tevatron

For $m_H=115$ GeV

$WH \rightarrow l \nu bb$: $\sigma = 26$ fb

$ZH \rightarrow \nu \nu bb$: $\sigma = 15$ fb

$ZH \rightarrow llbb$: $\sigma = 5$ fb

Total VH: 46 fb

For $l \nu$ and ll: $l = e/\mu$

Let's replace the Higgs boson by our well-known Z boson

$WZ \rightarrow l \nu bb$: $\sigma = 105$ fb

$ZZ \rightarrow \nu \nu bb$: $\sigma = 81$ fb

$ZZ \rightarrow llbb$: $\sigma = 27$ fb

Total VZ: 213 fb

$\sigma(VZ \rightarrow \text{leptons}+bb) \sim 5 \sigma(VH[115] \rightarrow \text{leptons}+bb)$

But more challenging WW background in the Z case → dijet mass resolution too large to distinguish the hadronic decays of W and Z

The observation of this process is the last milestone to demonstrate the Tevatron capability to observe the Higgs in the bb channel
3 preliminary results

→ all these new results consider b-tagged jets in the final state

- **WZ+ZZ search in dilepton plus jets**
 Reference: CDF conference note 10601

 6.6 fb⁻¹

- **WW+WZ search in lepton-neutrino plus heavy-flavor jets**
 Reference: CDF conference note 10598

 7.5 fb⁻¹

- **WZ+ZZ search in missing transverse energy plus heavy-flavor jets**
 Reference: D0 conference note 6223

 8.4 fb⁻¹
Selection: 2 leptons (electron/muon, 20 GeV), 76<\(M_{ll}\)<106 GeV and at least 2 jets (20 GeV)

- Define three samples: a heavy-flavor tagged sample, a light-flavor tagged sample and an untagged sample
- Z+jets background shape adjusted using a modified jet energy scale for gluon jets (correction derived from the Z-jet \(p_T\) balance)

The final discriminant used is the dijet invariant mass: combination of three samples

- Distributions after a global fit of the background normalizations and of the systematic uncertainties
- Sensitivity not yet sufficient to observe the signal

\[\text{expected limit: } 2.6 \sigma_{\text{SM}} \]
WW+WZ search in lν + HF jets (1/2)

Selection: 1 lepton (electron/muon, 20 GeV), MET>20 GeV and exactly 2 jets (20 GeV)

Background models

- Rejection of the multijet background using a multivariate discriminant
 - \(R_B \approx 90\% / \varepsilon_S \approx 95\% \)
- \(W + \text{LF jets}: \) normalization in the tagged samples from the pretag sample using mistag-rates derived from data
- Other backgrounds extracted directly from simulation

<table>
<thead>
<tr>
<th>Yields</th>
<th>1-tag</th>
<th>2-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>215</td>
<td>11</td>
</tr>
<tr>
<td>Backg.</td>
<td>5514</td>
<td>396</td>
</tr>
<tr>
<td>S/\sqrt{B}</td>
<td>2.9</td>
<td>0.6</td>
</tr>
</tbody>
</table>

In 1-tag: \(WW \approx 74\% \) of the signal
In 2-tag: \(WZ \approx 88\% \) of the signal

Most of the sensitivity of this search comes from the \(W \) decay into a charm-strange quark pair
WW+WZ search in $l \nu + HF$ jets (2/2)

The final discriminant used is the dijet invariant mass

\rightarrow combination of four samples: central leptons/non-central muon, 1-tag/2-tag

LLR for the B-only and S+B hypotheses

$WW+WZ \rightarrow l \nu + HF$ jets observed with a significance of 3.0 S.D. from the B-only hypothesis
Selection: high missing transverse energy (40 GeV) and exactly 2 jets acoplanar (20 GeV)
A lepton veto is applied to keep orthogonality with the similar search in the $lvbb$ channel but important WZ contribution from events with a non-identified lepton

This analysis is a copy of the analogous low mass Higgs search in the same final state: the only difference is the signal used for the training of the final discriminant, VZ instead of VH
Control samples are used to validate and improve the background modeling:

- multijet control sample (loosening of the MET cut)
- electroweak control sample (inversion of the isolated muon veto)

Example: validation of the trigger simulation and of the b-tagging algorithms in the electroweak control sample

Relatively loose tagging requirements to define the 1-tag/2-tag samples but full b-tag output injected in the final discriminant
WZ+ZZ search in MET + HF jets (3/3)

Yields	1-tag	2-tag
Signal | 252 | 77 |
Backg. | 18883 | 2725 |
S/√B | 1.8 | 1.5 |

Final discriminants in the 1-tag and 2-tag samples after a global fit to the data in the S+B hypothesis with marginalization of the systematic uncertainties.

Cross-section measurement:
\[\sigma(WZ+ZZ)_{\text{mes}} = 6.9 \pm 2.2 \text{ pb} \]
\[\sigma(WZ+ZZ)_{\text{th}} = 4.6 \text{ pb} \]
Summary and prospects

3 preliminary results presented

- **WZ+ZZ search in dilepton plus jets**
 - expected limit: $2.6 \sigma_{\text{SM}}$

- **WW+WZ search in lepton-neutrino plus heavy-flavor jets**
 - production observed with a significance of 3.0 S.D. from the B-only hypothesis

- **WZ+ZZ search in missing transverse energy plus heavy-flavor jets**
 - production observed with a significance of 2.8 S.D. from the B-only hypothesis

In preparation: a Tevatron combination for the **WZ+ZZ search in lepton plus heavy-flavor jets**