

Low mass secondary channels at the Tevatron Azeddine Kasmi Baylor University On behalf of the CDF and D0 collaborations

EPS 2011, Grenoble July 21-27, 2011

Introduction

- ElectroWeak Symmetry Breaking
 - SM allows for Higgs mechanism
 - Manifests itself as a heavy spin-0 boson
- SM predicts most properties and decay modes of Higgs but not its mass
- Experimental evidence so far:
 - Direct searches at LEP exclude
 m_H < 114 GeV
 - Direct searches at Tevatron exclude a window around $m_{\rm H}$ =160 GeV
 - Indirect constraints from precision measurements (\mathbf{m}_{W} and \mathbf{m}_{t}) favor a low mass Higgs: $\mathbf{m}_{H} < 157$ GeV
- CDF and D0 are pursuing direct searches for the SM Higgs over a wide range 100 GeV < m_H <200 GeV

Tevatron Higgs Searches Strategy

- At Tevatron Higgs boson production is a very rare process
- The search strategy is driven by the Higgs boson dominant decay modes:
 - H \rightarrow bb for M_H < 135 GeV:
 - gg → H not possible due to over-whelming multi-jet background
 - Associated production provides cleaner experimental signature
- $H \rightarrow WW^*$ for $M_H > 135$ GeV:
 - Since the leptonic W decays provide clean

final states, can take advantage of higher gluon fusion production cross section.

No channel left behind

7/21/11

Secondary Channels

Secondary channels

- Di-photon channel
 - Low backgrounds
 - Good reconstruction efficiency
 - High mass resolution
- Di-tau channel
 - Higher branching ratio
 - Enhanced in MSSM
- Each channel alone has no great sensitivity
 - However, their combination is equivalent to a primary channel

7/21/11

Tevatron

CDF

Tevatron

ppbar collisions at 1.96 TeV Peak luminosity 10³⁴ cm²s⁻¹ Weakly integrated lum ~50pb⁻¹ 11.6 fb⁻¹ delivered (9.6fb⁻¹ on tape)

Main Injector

1 km

7/21/11

A. Kasmi EPS-HEP 2011

Chicago

DØ

The CDF and the D0 Detectors

SM Higgs to diphoton

• Advantages

- Clean signature compared to $H \rightarrow bb$
- Mass resolution limited only by EM calorimeter (1σ diphoton width ~3 GeV compared to 1σ bbar width ~16 GeV)
- Sideband fits can be used to estimate background
- Contributes sensitivity in M_H range less accessible to primary searches
- The Challenge

 Small branching ratio

Event Selection

Use a Neural Network for ID

- trained on Jet vs. Photon MC
- validated with $Z \rightarrow 11 + \gamma$ data
- Reject candidates with low NN output
- Separate candidates between NN in midrange and high
 - Categorize events into 4 categories
 - Pass, Fail x2 candidates
 - Using 4x4 efficiency matrix, derive the number of events from γγ,γj,jγ,jj
- Shape from low NN score data sample

$$\begin{pmatrix} N_{ff} \\ N_{fp} \\ N_{pf} \\ N_{pp} \end{pmatrix} = E \times \begin{pmatrix} N_{jj} \\ N_{j\gamma} \\ N_{\gamma j} \\ N_{\gamma \gamma} \end{pmatrix}$$

7/21/11

Background Modeling

- Fit made to sideband regions of $M_{\gamma\gamma}$ distribution
- Use a six parameter polynomial times exponential to model smooth QCD diphoton background contribution
- Fit is then interpolated into the 12 GeV signal region

Event selection

- NN for Central region
- Converted photon are recovered

Results

Limits @ 120 GeV Expected limit: 11.3 Observed limit: 12.4

- Expected limit @120 GeV 13.0xSM
- Observed limit outside 2σ band @ 120 GeV, but reduced to < 2σ after trial factor taken into account

Combination Results

- Observed @ 120: 13.4xSM
- Expected @ 120: 8.3xSM
- This is deepest existing investigation into this channel – a channel that's very different from H→ bb
- Reaching within one order of magnitude of SM prediction!

BSM Higgs (Fermiophobic)

- We also consider a "benchmark" fermiophobic model
- A two-Higgs doublet model extension to the SM
- No gluon fusion production
- Only VH and VBF
- Assume SM cross sections
- Branching ratio is enhanced significantly

Fermiophobic Higgs Results

- For comparison:
 - LEP Limit: 109.7 GeV
- CDF
 - Expected limit 111 GeV
 - Observed limit 114 GeV
- *DØ*
 - Expected limit 112 GeV
 - Observed limit 112 GeV

CDF limit of 114 GeV is currently world's best limit on h_f pending Tevatron combination

7/21/11

SM Higgs Searches with τ leptons

- Channels:
 - $~\mathrm{H} \rightarrow \tau \tau$
- The Challenge
 - Difficult ID
 - Multiple decay modes
 - Type 1: τ +/- $\rightarrow \pi$ ^{+/-} ν
 - CAL + TRK and no EM subcluster

• Type 2:
$$\tau^{+/-} \rightarrow \pi^{+/-} \pi^0 \nu$$

- CAL + TRK + EM subcluster
- Hadronic τ are jets, but narrow with mostly 1, 3 Tracks
- QCD jet fake estimates hard
- Difficult reconstruction
 - Only part of energy visible

 $\tau \rightarrow \pi^{-} + N\pi^{0} \qquad (1 \text{ prong})$ $\tau \rightarrow \pi^{-}\pi^{+}\pi^{-} + N\pi^{0} \qquad (3 \text{ prong})$

23%, $\tau_h \tau_\mu$

CDF H $\rightarrow \tau\tau$ (1 τ leptonic and 2nd hadronic)

- Search for $H \rightarrow \tau^+ \tau^-$ in VH, VBF, and gluon-gluon $\tau_e \tau_h$ and $\tau_\mu \tau_h$ (BR 46%)
- Control regions:
 a) Z→ττ enriched
 b) W +Jets enriched
 c) QCD enriched
- Signal regions

Events

- a) 1 jet in the final state
- b) ≥ 2 jets in the final state

Control Region Njets = 0

CDF H $\rightarrow \tau\tau$ (1 τ leptonic and 2nd hadronic)

7/21/11

SM Higgs boson in the $\tau^+\tau^-$ + 2 jets final state

- NNs are used to select tau candidates
- BDTs are used to characterize differences between events originating from specific signal and background processes
- Information from the individual trees are combined into a final BDT to obtain the best possible overall discrimination

SM Higgs boson in the $\tau^+\tau^-$ + 2 jets final state

7/21/11

SM Higgs to $\tau\tau$ in VH channels

- Signal processes are: WH $\rightarrow lv\tau\tau$ and ZH $\rightarrow ll\tau\tau$
- Select 3 or 4 leptons including at least one hadronic tau candidate
- To improve search sensitivity, use Support Vector Machines (SVM) to discriminate signals from backgrounds.

ttH Search

- Expected ttH cross section is small ~ 4 fb at M_H = 120 GeV
 - Anomalous top couplings or new physics however could enhance this cross section
- ttbar production is the main BG
- Select events with high p_T lepton and large missing E_T
- At least two 2 *b*-jets tagged
- Sample divided into two categories
 - Four jets
 - Five or more jets

7/21/11

ttH Search

m_H = 115 GeV Ensemble output, 4 jets, 3+ tags

- Ensemble discriminants trained at each mass point
- Other channels which consider events without a lepton in the final state are also analyzed (not discussed here)

ttH Search

m_H = 115 GeV Ensemble output, 4 jets, 3+ tags

7/21/11

Conclusion

- Tevatron still collecting data with very high efficiencies
- Secondary channels contribute to the combination at the 5-10% level
- Light mass searches at Tevatron are improving rapidly
 - Sophisticated techniques
 - Considering more channels
 - Diphoton final state channels
 - Di-tau final state channels
 - ttH channels
 - All hadronic channels (not mentioned here)
 - Larger data sets
- Tevatron is still in the game of low mass Higgs searches
- Please check the public webpages of CDF and D0 for the details of each analysis