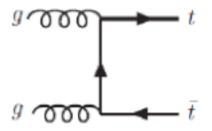


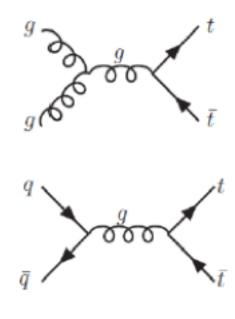
MEASUREMENT OF THE TOP-QUARK PAIR PRODUCTION CROSS-SECTION IN ATLAS

María José Costa (IFIC-Valencia) On behalf of the ATLAS Collaboration

EPS-HEP 2011, Grenoble 21st July 2011

TOP QUARK PAIR PRODUCTION @ LHC

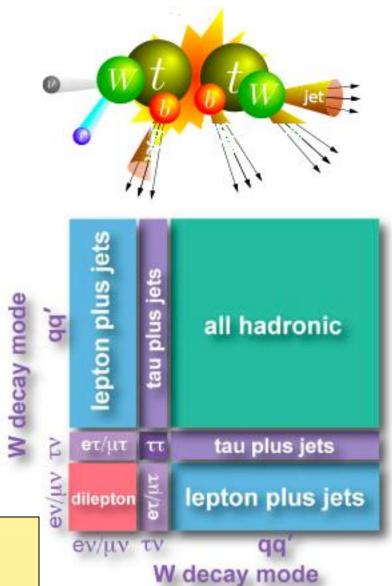

- The top pair production: QCD process, dominated at LHC by gg fusion.
- Theory NNLO (approx) for a m_{top} = 172.5 GeV:


$$\sigma_{t\bar{t}} = 164.6^{+11.4}_{-15.7} \text{ pb}$$
 @ $\sqrt{s}=7 \text{ TeV}$

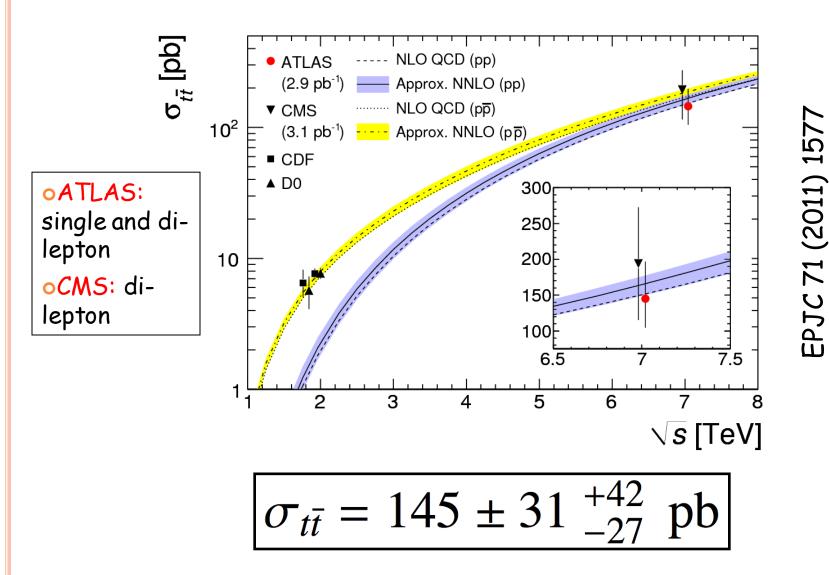
• More than 20 x Tevatron cross section

Why measure the top pair production cross section in the various decay channels?

- Test of perturbative QCD and of the SM description of the top quark decay.
- •Important background in searches for Higgs and BSM physics.
- Might reveal new physics that modifies the production and/or decay of top quarks

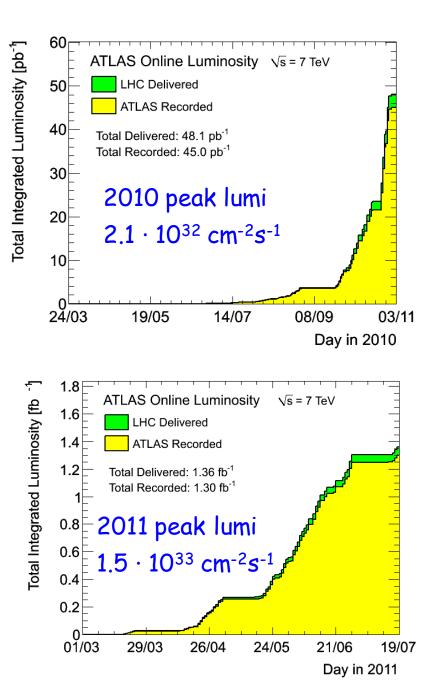


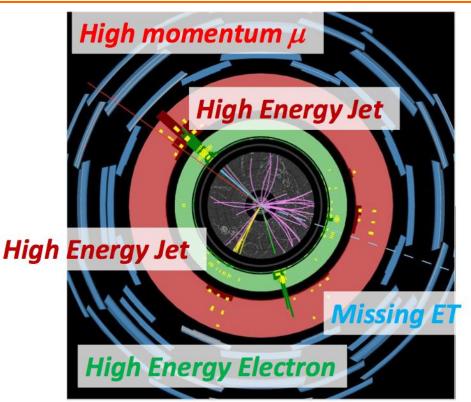
TOP PAIR EVENT TOPOLOGIES


• SM: BR(t \rightarrow W b) ~1

- Final states determined by W decays W \rightarrow qqbar (2/3), W $\rightarrow \ell v(1/3)$:
 - All hadronic: 45% of all decays, large QCD background
 - Lepton (e,µ)+jets: 30% of all decays, moderate background
 - Dilepton (ee,μμ, eμ): 5% of all decays, very clean
- Main backgrounds for leptonic channels:
 - W/Z boson+jets (similar signature)
 - QCD jets (misidentified as leptons)

Challenging signature: multiple leptons and jets, missing $E_{\rm T}$


FIRST TOP PAIR CROSS SECTION MEASUREMENT IN ATLAS WITH 3pb⁻¹

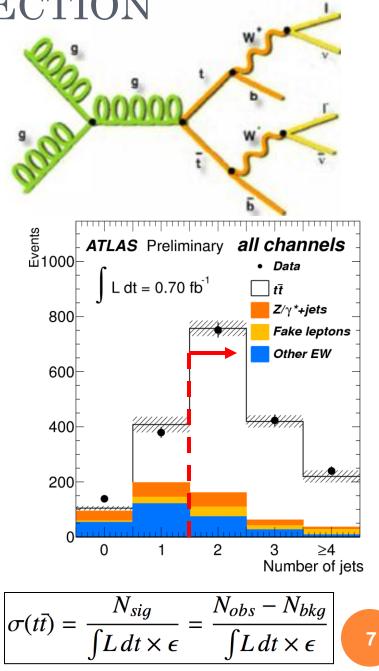

María José Costa - EPS-HEP 2011

DATA SAMPLE

- Thanks to the excellent operation of the LHC and the high ATLAS data taking efficiency.
- Analyses performed:
 - 2010 data: 35 pb⁻¹
 - All Hadronic channel
 - Lepton (e,μ)+jets
 - ο Dilepton (ee, μμ, eμ)
 - 2011 partial data: 0.70 fb⁻¹
 - ο Dilepton (ee, μμ, eμ)
 - Combination:
 - Dilepton (0.70 fb⁻¹) and single-lepton (35 pb⁻¹)

DILEPTON CHANNEL ANALYSES (BASED ON 0.70 fb⁻¹ OF 2011 DATA)

DILEPTON EVENT SELECTION

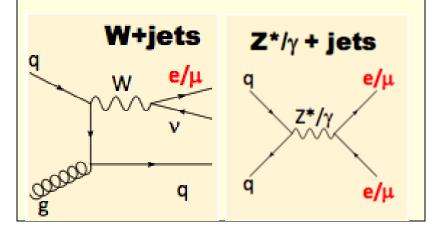

STRATEGY:

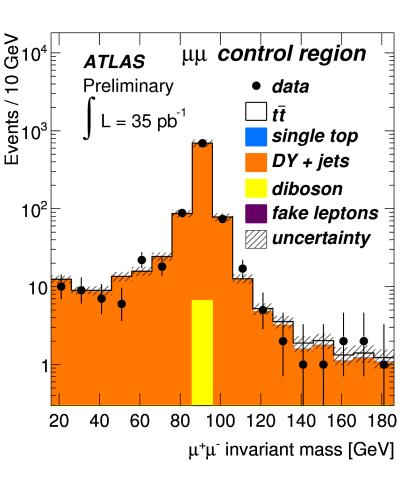
- Cross section estimated by counting number of signal events
- 2 complementary analyses: with and without b-tagging

EVENT SELECTION

Cuts were optimized for the 2 analyses: with and without b-tagging

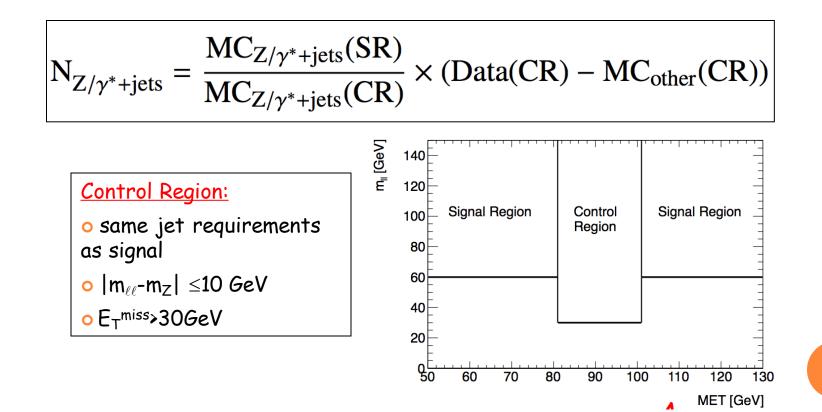
- Single lepton (e or μ) trigger
- Exactly 2 oppositely charged leptons (ee. μμ, eμ) with p_T > 20 GeV (μ), E_T>25 GeV (e) and at least one matched trigger
- Dilepton mass $m_{\ell\ell}$ > 15 GeV
- \triangleright E_T^{miss} > 60 (40) GeV and $|m_{\ell\ell}\text{-}m_Z|$ >10 GeV (ee, $\mu\mu$ channel)
- H_T(sum of jets and 2 leptons p_T) > 130 (140)
 GeV (e_μ channel)
- ≥2 jets with p_T > 25 GeV and $|\eta|$ <2.5
- ≥1 b-tagged jets with IP3DSV1 algorithm @ 80% efficiency.




8

DILEPTON BACKGROUND ESTIMATION

BACKGROUND:


- $Z/\gamma^*(\rightarrow ee, \mu\mu)$ +jets (data driven, assisted by MC)
- Events with fake leptons coming e.g. from W+jets, ttbar lepton+jets, single top and QCD (data driven)
- Other SM backgrounds: Single top, diboson, Z/γ*(→ττ)+jets: from MC normalized using theoretical cross section

Z/γ*(→ee,µµ)+jets BACKGROUND DATA DRIVEN ESTIMATE

- Measure # Z/γ^* +jets events in a sideband region where the fraction of Z/γ^* +jets is ~90%.
- Extrapolate it to the signal region.

FAKE LEPTONS BACKGROUND DATA DRIVEN ESTIMATE

- Fake background comes e.g. from:
 - W+jets: 1 real, 1 fake lepton
 - QCD multi-jet: 2 fake leptons
 - Matrix method:
 - 2 lepton selection criteria: loose L and tight T
 - Count number of observed dilepton events with N_{TT} , N_{LL} , N_{TL} , N_{LT}
 - Efficiency for prompt (real r) and non-prompt (fake f) leptons are measured in in Z→ℓℓ and di-jet events.
 - Extract N_{RR}, N_{FF}, N_{RF}, N_{FR}.

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

Fake (QCD)

Quark jets

mimic e/µ

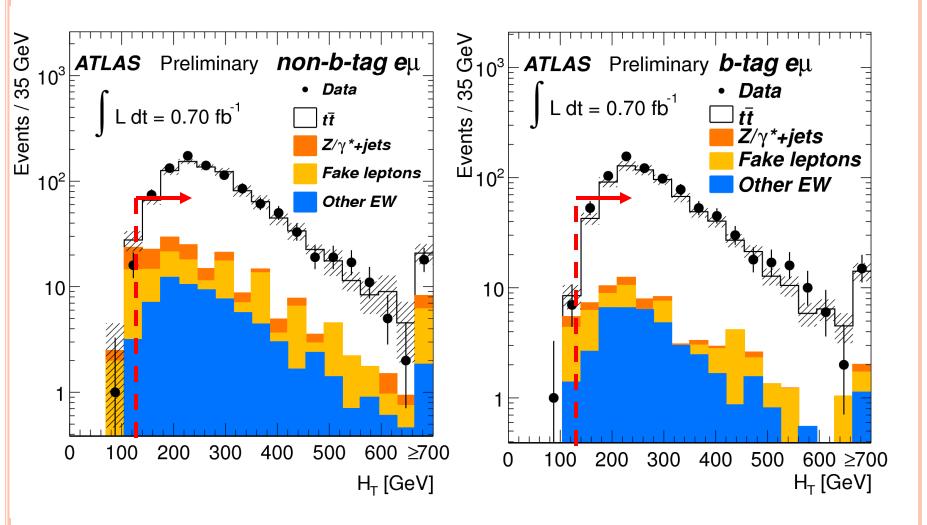
Quark jets

mimic e/µ

10

0000000

000000


g

W+jets

q

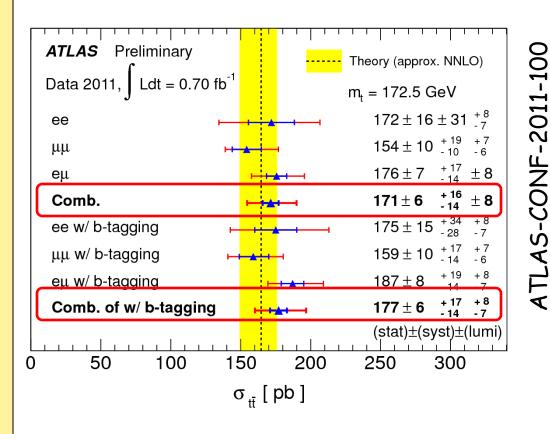
W

mimic e/μ

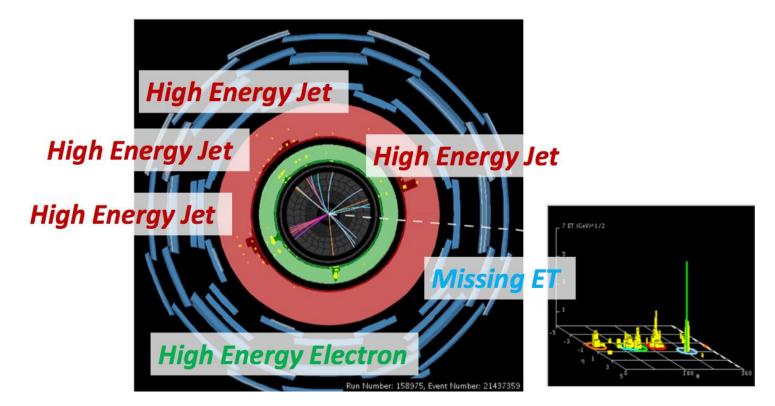
DILEPTON CHANNEL SYSTEMATICS

Analysis without b-tagging: systematics breakdown					
	ee	μμ	еµ	Combined	
Uncertainty Source	$\Delta \sigma / \sigma$ [%]	$\Delta \sigma / \sigma [\%]$	$\Delta \sigma / \sigma [\%]$	$\Delta \sigma / \sigma [\%]$	
Data statistics	-9.3 / 9.8	-6.6/6.8	-4.1/4.2	-3.3/3.3	
Luminosity	-4.0/4.7	-3.7/4.3	-4.3 / 4.7	-4.2/4.6	
MC statistics	-4.2/4.9	-2.8 / 3.2	-1.9 / 2.1	-1.5 / 1.6	
Lepton energy scale	0.0/0.9	0.0/0.5	-0.3 / 0.3	-0.4 / 0.0	
Lepton energy resolution	0.0/0.6	-0.5 / 0.8	0.0/0.5	-0.4 / 0.3	
Lepton indent. scale factor	-5.5 / 6.6	-1.2/2.7	-3.1 / 3.4	-2.6 / 2.7	
Jet energy scale	-10.0 / 10.6	-3.8/7.6	-3.7 / 4.5	-5.9 / 5.3	
Jet energy resolution	-0.6/0.8	-3.1/3.6	-0.6/0.7	-0.4 / 0.3	
Jet reconstr. efficiency	0.0 / 0.0	0.0 / 0.0	0.0/0.0	0.0/0.0	
Drell-Yan prediction	0.0 / 0.0	-0.4 / 0.4	0.0 / 0.0	0.0/0.0	
Fake leptons	-1.6/1.6	-0.4/0.4	-3.2/3.2	-2.0 / 1.9	
MC generator	-4.3 / 5.3	0.0/0.0	-2.9 / 3.2	-2.1 / 2.3	
Parton shower	-4.7 / 5.8	-0.4 / 0.5	-2.9 / 3.2	-2.3 / 2.4	
ISR	-7.1/0.6	-0.8 / 3.6	-0.5 / 2.4	-2.4 / 2.5	
FSR	-13.6/0.6	-0.7/4.3	-2.4 / 0.5	-1.3 / 1.4	
PDF	-2.4 / 2.8	-1.7 / 2.2	-2.4 / 2.7	-2.3 / 2.5	
$E_{\rm T}^{\rm miss}$ reconstruction	-1.0 / 1.1	-0.8 / 1.7	0.0 / 0.0	-0.5 / 0.6	
Pile-up	-0.6/1.3	-0.5 / 1.5	0.0 / 0.0	-0.5 / 0.5	
Detector modeling	-0.6/1.1	-0.7 / 1.5	-0.7 / 1.2	-1.0 / 1.3	
Theoretical cross-sections	-1.4 / 1.3	-1.7 / 1.8	-2.1 / 2.1	-1.9 / 1.9	
All systematics	-20 /18	-7.3 /13	-9.2/11	-9.3 / 10	
Stat + Syst	-22 / 20	-9.9 / 15	-10 / 12	-9.8 / 11	

DILEPTON CHANNEL RESULTS


• The 2 complementary measurements are in agreement with each other.

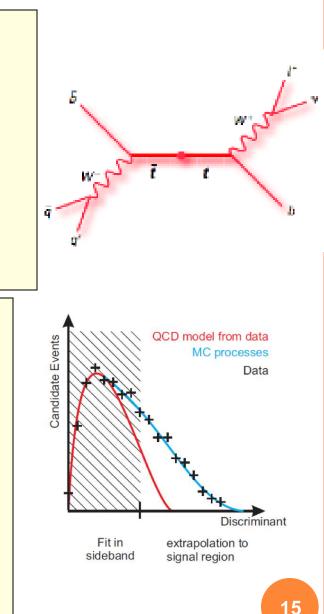
 Dominated by systematics, dominant sources: luminosity, jet energy scale, for btagging analyses also btagging efficiency.


• The precision achieved (~11%) is significantly better than the previous measurement based on 2010 data (~17%)

 Consistent with state-ofthe-art theory prediction and measurement in lepton+jets channel.

0.70 fb⁻¹ 2011 data: ~ 11% precision

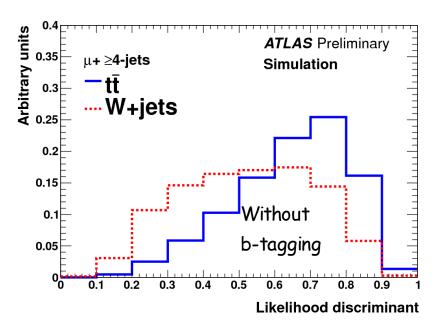
LEPTON+JETS CHANNEL ANALYSIS (BASED ON 35 pb⁻¹ FULL 2010 DATA)


SELECTION AND BACKGROUND ESTIMATE

STRATEGY: Template fit to a LH discriminant EVENT SELECTION

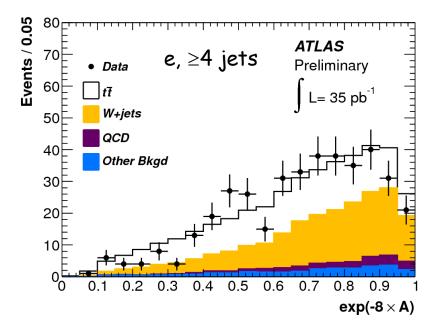
- Single lepton (e or μ) trigger
- Exactly 1 lepton (e or μ) with p_{T} > 20 GeV matched to trigger
- E_T^{miss} > 20 GeV, E_T^{miss}+m_T(W) > 60 GeV (muon channel)
- E_T^{miss} > 35 GeV, m_T(W) > 25 GeV (electron channel)
- o \geq 3 jets with p_> 25 GeV and $|\eta|$ <2.5

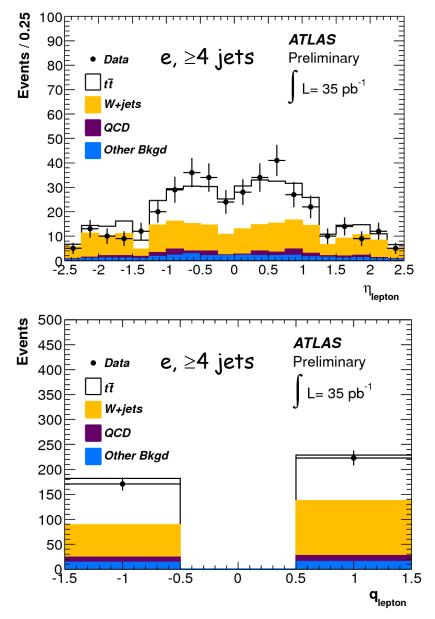
BACKGROUND ESTIMATION:


- W+jets: shape determined from MC, normalization from fit
- QCD multi-jet (due to non-prompt (fake) leptons): Estimated from data.
 - Muon channel: Matrix method
 - Electron channel: Likelihood template fit of $\mathsf{E}_{\mathsf{T}^{\mathsf{miss}}}$ distribution
- Small backgrounds (Z+jets, diboson, single top): shape from MC, normalization from theoretical calculation.

LEPTON+JETS ANALYSIS STRATEGY

<u>Baseline analyses: Multivariate</u> <u>measurement</u>

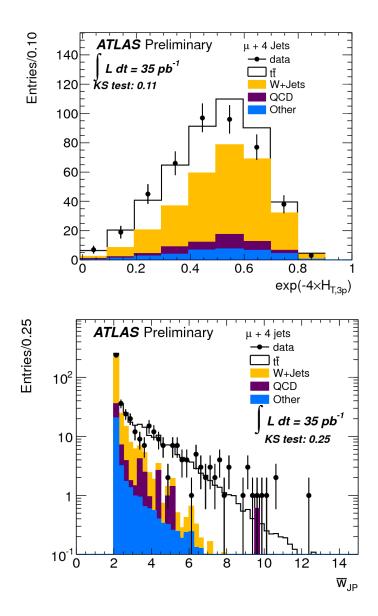

- Exploiting the difference between signal and W+jets dominant background
- A likelihood discriminant is built from well modeled event kinematic variables
- Cross section extracted from a binned likelihood fit of the discriminant to a weighted sum of signal and background templates
- 2 analyses: with and without b-tagging information



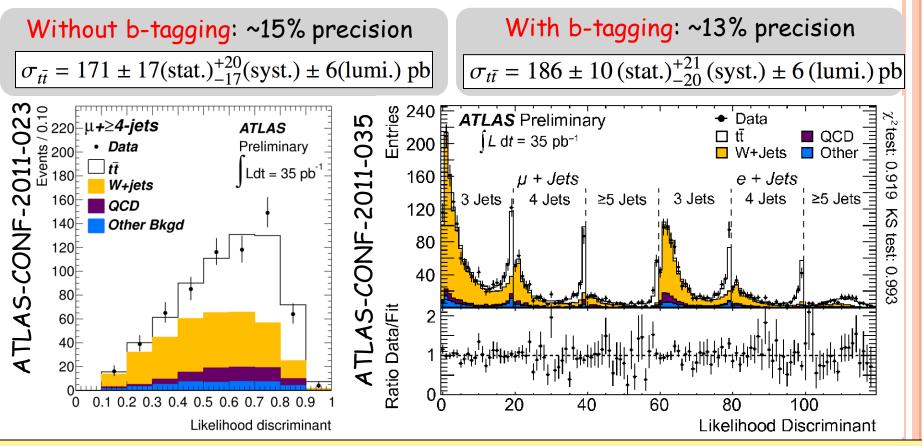
LEPTON+JETS WITHOUT B-TAGGING

- The following input variables were used:
 - Lepton η: ttbar more central
 - Lepton charge: ttbar symmetric, W+jets asymmetric
 - Aplanarity: ttbar more isotropic

• 4 channel fit: e,
$$\mu$$
 + 3 jets, \geq 4 jets



LEPTON+JETS WITH B-TAGGING


- The following input variables were used:
 - Lepton η: ttbar more central
 - Aplanarity: ttbar more isotropic
 - New variable: H_{T,3p}

$$H_{T,3p} = \sum_{i=3}^{N_{\text{njets}}} |p_{T,i}^2| / \sum_{j=1}^{N_{\text{objects}}} |p_{z,j}|$$

- New variable: Average btagging weight for the two most b-like jets
- 6 channel fit: e, µ + 3, 4, ≥5 jets using profile likelihood technique: systematic uncertainties included as nuisance parameters → constraint by data

LEPTON+JETS ANALYSES RESULTS

- Based on 2010 data and already dominated by systematics, dominant sources:
 - jet energy scale & resolution, ISR/FSR
 - for b-tagged analyses, also: b-tagging calibration, W+jets heavy flavour content
- Consistent with state-of-the-art theory prediction
- Consistent with various cross checks analyses (cut-and-count, 1-dim variable fit, hadronic top mass fits) performed and with the di-lepton channel.

COMBINATION DILETON 0.70 fb⁻¹ FROM 2011 DATA

LEPTON+JETS 35 pb⁻¹ 2010 DATA

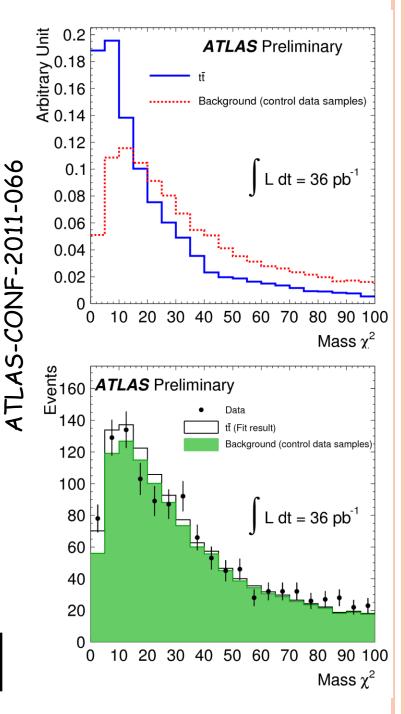
COMBINATION LEPTON+JETS & DILEPTON

- The most precise methods chosen for the combination:
 - Lepton+jets with b-tagging (e+jets, μ +jets) based on 35 pb⁻¹
 - Dilepton without b-tagging (ee, $\mu\mu$, $e\mu$) based on 0.70 fb⁻¹
 - 5- channel combination done using a profile likelihood fit

80		Uncertainty source	Uncertainty (pb)
Ä		Theory (approx. NNLO) Heavy flavor	4.1
4	_dt = 35 pb ⁻¹ (L+jets, 2010) m _t = 172.5 GeV	$m_t = 172.5 \text{ GeV}$ Jet energy scale	3.9
2011-10	\int Ldt = 0.70 fb ⁻¹ (dilepton, 2011)	Fake lepton estimate	3.2
TLAS-CONF-2	L+jets w/ b- tagging	Initial and final state radiation $186 \pm 10 \pm 20 \pm 6$	3.0
			2.8
	Dilepton w/o b- tagging	$171 \pm 6 \stackrel{+16}{_{-14}} \pm 8 \text{Event generator}$	2.3
	Combination	176 ± 5 ± 13 ± 7 Electron efficiency	2.0
	L+jets w/o b- tagging	$171 \pm 17 \pm 20$ $171 \pm 17 \pm 6$ Muon efficiency	1.5
			0.5
	Dilepton w/ b- tagging	$177 \pm 6 + \frac{17}{14} + \frac{8}{7}$ QCD Shape	0.4
T A		(stat)±(syst)±(lumi) All others	5.1
) (50 100 1	0 200 250 300	
	σ	[pb]	

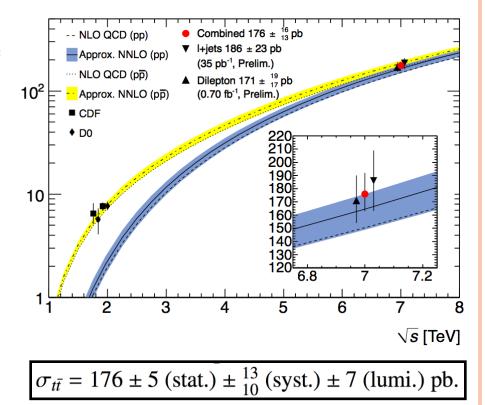
 $\sigma_{t\bar{t}} = 176 \pm 5 \text{ (stat.)} \pm \frac{13}{10} \text{ (syst.)} \pm 7 \text{ (lumi.) pb.}$

HADRONIC CHANNEL ANALYSES (BASED ON 35 pb⁻¹ FULL 2010 DATA)


HADRONIC CHANNEL

- Measure cross section in all possible channels constitutes an important cross check
- o Signature: ≥6 jets, 2 b-tagged
- Very challenging channel:
 - QCD overwhelming: S:B ~1:15
 - Main systematics: b-tagging, jet energy scale
- Construct mass χ² discriminant:

$$\chi^2 = \sum_{i=1}^2 \left(\frac{m_{jjb}^i - m_t}{\sigma_t} \right)^2 + \left(\frac{m_{jj}^i - m_W}{\sigma_W} \right)^2$$


 $\circ\,$ Select the combination with lowest $\chi 2$

$$\sigma_{t\bar{t}}$$
 < 261 pb. @ 95% CL

SUMMARY AND CONCLUSIONS

- Cross section measured in ATLAS within 8.2% uncertainty b[™] with LHC pp collisions at √s=7 TeV by combining results obtained with 35 pb⁻¹ lepton+jets channel with 0.70 fb⁻¹ dilepton channel.
- Results consistent with theoretical QCD predictions and with CMS results.
- Important to focus future work in improving systematic uncertainties

• A search of top pair production in the all hadronic channel has also been performed, observed upper limit in agreement with measurement.

• Other analyses coming along: hadronic tau channel, ttbar+jets and differential cross section measurements.