

MEASUREMENT OF PROPERTIES OF TOP QUARK DECAYS IN ATLAS

* * * *

* * * *

Pamela Ferrari NIKHEF on behalf of the ATLAS Collaboration

top quark properties at LHC $\sigma_{t\bar{t}}$ [pb] NLO QCD (pp) ATLAS 180 ± 18 pb (35 pb⁻¹, Prelim.) Approx. NNLO (pp) LHC is a top factory ▼ CMS 158 ± 19 pb (a) COQ OJN 10^{2} (36 pb⁻¹, Prelim. - Approx. NNLO (pp) $\sigma = 165 \text{ pb} (7 \text{ TeV}) : 20 \text{ times larger than TEVATRON}$ CDF ▲ D0 300 10 ttbar pairs per minute @ 10^{33} cm⁻²s⁻¹ 250 10 200 150

Top properties can be useful to:

- precise test of SM predictions in terms of: charge, spin, tWb vertex
- look for new physics likely to show up in top sector:
 - rare decays
 - anomalous couplings
 - anomalous MET
 - ttbar charge asymmetry
 - new production/final states (FCNC, resonances)

W

Single lepton events

jets: Anti-kt 0.4, MC based calibration, $|\eta| < 2.5$ 9

electrons: good isolated EM cluster/ calorimetric object matched to track $|\eta| < 2.47$

<u>**muons:**</u> inner tracker+muon spectrometer object, track and calorimeter isolation

 $|\eta| < 2.5$

<u>MET:</u> Vector sum of calorimeter energy deposits corrected for identified objects + muons (muon calorimetric E subtracted)

<u>**B tagging algorithm SVO</u>**: secondary vertex from track in jets, **50% tagging efficiency** on b-jets</u>

 e^{\dagger}

S

<u>Ud</u>

'Ħ

electron+jet

nuon+jets tau+jets

tau+jets

muon+jets

electron+jets

сs

иđ

 $\langle \bullet \rangle$

Single lepton events selection:

- $1 e/\mu (p_T \ge 20 GeV)$
- 4 jets (at least 1 b-tagged) $p_T \ge 25 \text{ GeV}$

e, µ

- MET \geq 35GeV e channel, MET_µ \geq 20GeV µ channel • m_T(W)>25 GeV e channel,
- $MET+m_T(W)>60 \text{ GeV }\mu \text{ channel}$

ATLAS-CONF-2011-037

W polarization probes Wtb structure -> Extract limits on new physics:

Single lepton ttbar final states are used:

- $p_z(v)$ obtained from kin. fit or from χ^2 minimization
- QCD multijet shape and normalisation from Data Driven methods: matrix method.

• Method1: helicity fractions from likelihood fit of cosθ* using MC templates corresponding to different pure helicity states.

W polarization in top decays

• Method2: angular asymmetries extracted counting events in 2 bins of $\cos\theta^*$ distribution.

$$A_z = \frac{N(\cos\theta^* > z) - N(\cos\theta^* < z)}{N(\cos\theta^* > z) + N(\cos\theta^* < z)}$$

3 different z values to extract the W helicity fractions F₀, F_L, F_R.

A detector correction function is used to recover undistorted parton level distributions.

	template method	Asymmetry method	V-A prediction		Asymmetry method
Fl	0.42 ± 0.12	0.36±0.10	≈0.3	\mathbf{A}_{+}	0.50 ± 0.07
Fo	0.59±0.12	0.65±0.15	≈0.7	AFB	-0.29±0.08
Fr	Fixed 0	-0.01±0.07	≈0	A_	-0.86±0.04

• statistically limited: (16%)

 main systematics: ISR/FSR (7%), JES (5%), background shape W/Z+jets (5%)

U polarization: limits on anomalous couplings

All the results are compatible with the SM therefore we extract limits on anomalous couplings. The W_{tb} lagrangian up to operators of dimention 6 is given by: [arXiv0811.3842,arXiv:0904.2387]

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_{\rm L} P_L + V_{\rm R} P_R) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{M_W} (g_{\rm L} P_L + g_{\rm R} P_R) t W_{\mu}^{-}$$

limits compatible with 0 (e.g SM expectation):

 $\text{Re}(V_R) \in [-0.44, 0.48]$

Re (g_L) \in [-2.83,2.46]

Re $(g_R) \in [-5.59, 1.81]$

The anomalous couplings can be expressed in terms of the operator coefficients

$$V_{\rm R} = \frac{1}{2} C_{\phi\phi}^{33*} \frac{v^2}{\Lambda^2} g_{\rm L} = \sqrt{2} C_{dW}^{33*} \frac{v^2}{\Lambda^2} g_{\rm R} = \sqrt{2} C_{uW}^{33} \frac{v^2}{\Lambda^2}$$

$$\begin{split} &\frac{\operatorname{Re}\,(C_{\phi\phi}^{33})}{\Lambda^2} \in [-14.66, 15.78]\,\operatorname{TeV}^{-2},\\ &\frac{\operatorname{Re}\,(C_{dW}^{33})}{\Lambda^2} \in [-2.83, 2.46]\,\operatorname{TeV}^{-2},\\ &\frac{\operatorname{Re}\,(C_{uW}^{33})}{\Lambda^2} \in [-5.59, 1.81]\,\operatorname{TeV}^{-2}. \end{split}$$

 Λ new physics scale

$L_{int}{=}35\,pb^{-1}$

 \diamond

FCNC in top decays

- FCNC forbidden at tree level in SM, and much smaller than t->Wb @1 loop
- Several SM extensions predict higher BRs (2HDM, MSSM, SUSY R-Parity violation.
 - Search for ttbar production with 1 top decaying via SM decay and 1 top decaying via FCNC into qZ

	SM prediction	New physics	Tevatron exclusion
BR(t→qZ)	10 ⁻¹² %	10 -2-10 -8%	< 3.2%

Events with 3 leptons in the final state are selected:

- 3 leptons 2 out of which of same flavour (e/μ) and opposite charge $(p_{T1} \ge 25 \text{GeV}, p_{T2} \ge 20 \text{GeV}, p_{T3} \ge 15 \text{GeV})$
- =2 jets (p_{T1}≥30GeV, p_{T2}≥20GeV)
- MET ≥20GeV
- $p_z(v)$ obtained from χ^2 minimization

• Z+jets 25% uncertainty. Major systematics: SM tt fragmentation (26%), ISR/FSR(34%), JES(13%)

Selection	Final s	election
Channel	e	μ
W+jets	0.00 ± 0.08	0.00 ± 0.08
Z+jets	0.10 ± 0.08	0.02 ± 0.01
Dibosons	0.08 ± 0.01	0.11 ± 0.01
tī	0.05 ± 0.02	0.04 ± 0.02
Single-top	0.00 ± 0.00	0.00 ± 0.00
Expected background	0.23 ± 0.11	0.17 ± 0.08
Data	0	1
Signal Efficiency	$(8.53 \pm 0.09)\%$	$(11.96 \pm 0.11)\%$

- No evidence for $t \rightarrow qZ$ decay.
- 95% CL upper limits on FCNC BR have been extracted using frequentist method (syst+stat errors)

	observed	(-1σ)	expected	(+1 <i>\sigma</i>)	
without systematics	16%	8%	11%	15%	
with systematics	17%	9%	12%	16%	

ATLAS-CONF-2011-061

$L_{int}{=}35\,pb^{\text{-}1}$

FCNC in top production

Production of a single top via FCNC:

Look for $t \rightarrow qg$ vertex (q=u,c) Standard selection apart:

- exactly 1 b-tagged jet ($p_T \ge 25 \text{GeV}$)
- $p_z(v)$ obtained from m_W constraint

	SM prediction	New physics	Tevatron exclusion
BR(t→qg)%	$5*10^{-10}$	10 -2-10 -6	<0.02/0.4 (u/c)

Cutflow after selection:

Channel	е				μ		combined		
Signal	0.8	±	0.0	1.2	±	0.0	1.9	±	0.0
Single top	12.9	±	1.3	20.9	±	2.1	33.9	±	2.5
tī	5.1	±	0.5	6.8	±	0.7	12.0	±	0.9
W+light jets	37.7	±	7.8	71.4	±	14.5	109.1	±	16.5
$Wb\bar{b}/Wc\bar{c}$ +jets	7.8	±	1.6	16.8	±	3.5	24.7	±	3.8
W + c + jets	52.6	±	10.6	116.6	±	23.4	169.2	±	25.6
Z+jets + diboson	1.9	±	0.4	11.7	±	2.5	13.5	±	2.5
QCD	14.4	±	7.2	33.1	±	16.6	47.5	±	18.0
total background	132.4	±	15.1	277.5	±	32.5	409.9	±	35.8
data		150			340		4	490	

10

FCNC in top production

A neural network is used to separate background and signal: NeuroBayes[©]
 Most discriminating variables e/μ channels combined (13 input variables)

• NN Output

FCNC in top production

- Main systematics: JES, ISR/FSR, Heavy Flavour fraction in W+jets, b-tagging
- No excess observed: set limit on σ_{qg} * BR(t \rightarrow lvb)
- systematic uncertainties are introduced as nuisance parameters with a Gaussian prior distribution for each parameter
- Upper limit from Bayesian posterior

	expected			observed
	(-1σ)	median	$(+1\sigma)$	
only normalization uncertainties	9.6 pb	13.7 pb	19.7 pb	15.6 pb
with all systematics	12.0 pb	17.4 pb	25.6 pb	17.3 pb

ATLAS-CONF-2011-036

ttbar + anomalous ET Miss

- <u>Several models</u>: (e.g. little Higgs ¹, stop quark SUSY, UED models with KK-parity²) predicting:
 - pair produced exotic top partner quark-like $T \rightarrow tA_0$
 - A₀ stable neutral scalar (DM candidate), escapes undetected.
- <u>Signature</u>: large E_T^{miss} (> 80 GeV) and m_T (>120 GeV)
- Current direct and indirect searches for 4th generation quarks which have similar signatures (lower Etmiss) lead to best present limits³:

300≤m(T)≤600 GeV

Single lepton ttbar events selected:

- no b-tag requested
- $E_T^{miss} \ge 80 \text{GeV}$
- m_T (lepton+ E_T^{miss})>120 GeV

Simple cut and count experiment!

¹hep-ph/0105239,hep-ph/0308199hep-ph/0012100 ³arXiv:1002.3366v2

Alwall, Feng, Kumar *et al.* (2010) Berger, Cao (2009)

13

ttbar+ anomalous ET Miss

Analysed Lint=35 pb⁻¹

Background estimation from DD techniques:

• W+jets and single lepton ttbar treated together:

- good agreement in tails of kinematic distributions.
- lower jet multiplicities to study shape in high tail of m_T.
- No evidence of Data/MC shape correction needed (~15% systematic uncertainty)
- m_T distribution near m_W (60-90 GeV) to normalise MC.

• QCD shape and normalisation from Data:

- invert electron ID criteria in e channel. Anti-electron templates are determined to be used for fitting. The region Etmiss<35 GeV is fit to determine fake eff., while the kinematics of anti-electron is used to determine the number of events passing in the signal region.
- Matrix method (defining loose and tight sample) in μ channel.

No disagreement with SM.

W+jets and single lepton ttbar

Source	Yield
Single-Lepton <i>tt</i> / <i>W</i>	8.4 ± 1.6
Dilepton $t\bar{t}$	7.6 ± 2.0
Z+jets	0.4 ± 0.1
Dibosons	$0.2\pm {<}0.1$
Single Top	0.4 ± 0.1
QCD	0.2 ± 0.6
Total Background	17.2 ± 2.6
Data	17

ttbar+ anomalous ET Miss

Friday, 22 July 2011

 \diamond

ttbar resonances

Search for resonances decaying to ttbar pairs in single lepton channel:

- Kaluza Klein gluon g_{KK} (coloured) in Randall Sundrum model (arXiv:0910.1350[hep-ph]) predicts wide ttbar resonance
- leptophobic Z' (colourless) in Topcolor model (arXiv:hep-ph/9411426): predicts narrow ttbar resonance
- Lint=200 pb⁻¹

Single lepton ttbar events selected

QCD background from Data Driven techniques:

• anti-electron method (for electron channel) and jet-electron method (for both channels) used

<u>QCD</u> shape: use multijet sample, use fake e/\mu in data to model QCD distributions</u>

QCD normalisation: Fit Etmiss spectrum before Etmiss cut for ttbar,W+jets,Z+jets+QCD to data.

ttbar resonances: signal/background yields

W+jets:

- W+jets enriched data sample selected as: exactly 1 lepton ($p_T > 20 \text{ GeV}$), $30 < E_T^{miss} < 80 \text{ GeV}$, $40 < M_T < 80 \text{ GeV}$, no hard b-tag jet.
- Fit jet multiplicity distribution and extract scale factors in each jet bin.

	Electron channel	Muon channel
tī	724	988
Single top	36	50
W+jets	93	172
Z+jets	6	8
Diboson	2	2
Total MC Background	861	1220
QCD Background	35	105
Total Expected	896	1325
Data observed	935	1396
Z', m = 500 GeV	15	21
$g_{KK}, m = 700 \text{ GeV}$	68	93

good agreement in shapes of kinematic distributions

ttbar resonances: mass reconstruction

Main systematics:

Main shape uncertainties arise from b-tagging efficiency (11%), jet energy scale (9%), modeling of ISR/FSR (7%).

		Systematic uncertainties
Lumino	sity	4.5%
	SM tī	(+7.0 -9.6)%
	Single top	10%
Background	W+jets	35%
	Dibosons	5%
	QCD	e:30% μ:50%
Lepton trigger and reconstruction efficiencies		≤ 1.5%

Mass reconstruction:

 p_Z of neutrino obtained from m_W constraint. Jets far from the rest of the activity of the event are discarded $\Delta R_{min} > 2.5-0.015 \times m_j$ (m_j =jet mass). m_{ttbar} from E_T^{miss} +lepton+4 leading jets (3 if only 3 remain).

ttbar resonances: results

Z' in top color model narrow resonance:

- observation cannot exclude mass range until now
- Analysis probes already x-sections of few pb at m_Z·~1 TeV

g_{KK} in Randall Sundrum model (wide resonance):

- g_{KK}>650 GeV/c² @95%CL
- with more statistics will probe up to 1 TeV

ATLAS-CONF-2011-122

$L_{int}=0.7~{fb}^{-1}$

ttbar charge asymmetry

New! Results shown for the first time by ATLAS

At NLO, QCD predicts an asymmetry for ttbar produced via qqbar initial state

- mainly through interference of box/s-channel and ISR/FSR diagrams
- the top quark is predicted to be emitted preferably in the direction of the incoming quark (antitop in the direction of the antiquark)

• New physics models:

(e.g. axigluons, leptophobic Z') can alter this asymmetry

• <u>Measurements at Tevatron:</u>

 2σ excess over the SM predictions. For $m_{tt}>450$ GeV, 3.4σ excess.¹

• <u>At LHC, ttbar mainly produced via gg fusion which is symmetric</u>

- still a small asymmetry is predicted from qqbar initial state (~0.5 % MC@NLO)
- in the lab frame, top preferentially emitted in forward/backward directions while antitop are more centrally produced

Asymmetry

Standard selection for single lepton ttbar final states is applied.

¹Phys. Rev. D 83 (2011) 112003 , D0 6062-CONF (2010)

ttbar charge asymmetry: backgrounds

QCD: data driven estimate of the normalization

• use matrix method: define a loose and tight lepton selection. Loose sample without and with looser isolation requirements for the muon and electrons, respectively.

W+jets: data driven estimate of the normalization

- use the W charge asymmetry (more W+ produced than W- in pp collisions)
- r_{MC} = W+ / W- well known theoretically can be used to extract the total number of W+jets before

gging
$$N_{W^+} + N_{W^-} = \left(\frac{r_{MC} + 1}{r_{MC} - 1}\right)(D^+ - D^-)$$

D+/-: number of events in data after the ttbar selection,

• extract the number of W+jets after tagging:

$$W_{\text{tagged}} = W_{\text{pretag}} \cdot f_{\text{tagged}}$$

ftagged MC ratio between 4jet pretag/tagged

uncertainties from r_{MC}, JES, PDF, generator and HF fraction.

overall Data/MC agreement good

Channel	μ + je	ets p	retag	μ + je	ets ta	gged	e + je	ets p	retag	e + je	ets ta	gged
tī	4784	±	5	3247	±	4	3293	±	4	2218	±	4
Single top	306	±	2	171	±	2	219	±	2	124	±	2
W+jets	5741	±	915	494	±	234	3436	±	628	309	±	144
Z+jets	632	±	7	43	±	2	535	±	7	35	±	1
Diboson	90	±	2	8	±	1	56	±	1	5	±	0
QCD	1103	±	552	227	±	227	665	±	332	84	±	84
Total background	7871	±	1068	943	±	326	4910	±	711	557	±	167
Signal + background	12655	±	1068	4189	±	326	8203	±	711	2775	±	167
Observed			12705			4392			8193			2997

 $\langle \bullet \rangle$

ta

ttbar charge asymmetry: reco & unfolding

ttbar system reconstructed using kinematic likelihood method:

assigns a probability for the kinematics of an observed event to be compatible with a top quark pair decay.
correct event topology on ttbar MC: w/o b-tag: 62 %, w/ b-tag: 74%

Unfolding to move from reconstructed asymmetry to truth asymmetry

- Subtract background before unfolding
- should correct both from reconstruction/selection and acceptance effects:

$$S_i = \sum_j R_{ij} T_j.$$

- Tj: true distribution, Si: reco distribution, Rij: response matrix (expected bin j, reco bin i).
- Need to invert Rij to get Tj

Bayes' theorem applied iteratively to invert Rij

 \diamond

ttbar charge asymmetry: results

• Main systematics: JES, JER, ttbar modelling, top mass

results after detector+acceptance unfolding: no significant hint of BSM asymmetry

	μ channel	e channel	combined	MC@NLO
Ac	-0.028±0.019(stat) ±0.022(syst)	-0.009±0.023(stat)±0.032(syst)	-0.023±0.015(stat)±0.021(syst)	0.005±0.001(stat)

Top properties have been exploited with 2010 L_{int}=35 pb⁻¹data, but also with higher statistics of data taken in 2011.

- Many interesting results that constrain several models.
- In many cases with very little data, already able to push the reach to the TeV scale, to reach Tevatron or to set world's best limits
- Statistically limited analyses will become very interesting now, we have already 1 fb⁻¹ of data!

and ... 2011 will be the year of top properties!