

Ch. Yèche (CEA-Saclay Irfu)

Outline:

- > Concepts : BAO
- > SDSS-III BOSS
- > Quasar Target Selection
- > Proof of principle: First 3D HI map

International Europhysics Conference on HEP Grenoble - July 21-27, 2011

Concepts

A probe for Dark Energy: Baryonic Acoustic Oscillations

A special distance:

> Galaxies form in the overdense shells about 150 Mpc in radius.

For all z, small excess of galaxies 150 Mpc (in comobile coordinates) away from other galaxies.

\Rightarrow Standard Ruler

Ch. Yèche

EPS-HEP 2011

Acoustic propagation of an overdensity:
> Sound wave through relativistic plasma (baryons, electrons, photons).
> Baryon and photon perturbations travel together till recombination (z~1100).
> Then, the radius of the baryonic overdensity is frozen at 150 Mpc.

Grenoble, July 22, 2011

Observation of baryonic acoustic peak

200

Grenoble, July 22, 2011

EPS-HEP 2011

Ch. Yèche

Current status of BAO

SDSS-III - BOSS -A brief overview

Ch. Yèche

BOSS coverage

From SDSS to SDSS-III

SDSS Consortium

 2.5m Sloan Telescope
 Apache Point, NM
 Wide field telescope ~ 7 deg²
 Camera equipped with 5 filters (~120 millions pixels)

Upgrade for SDSS-III

New fiber system => 1000 fibers
 Replacement of red CCDs by LBNL/SNAP
 CCDs => LRG with higher z
 Replacement of blue CCDs with e2v CCDs
 with better throughput in UV

 \Rightarrow Lyman- α forest program

Grenoble, July 22, 2011

BOSS Status

Observing plan

> Fall 2008 + Fall 2009: Complete imaging survey (10 700 deg²)

- > Fall 2009: Commissioning of spectrograph
- > 14-15 Sept. 2009 : First light
- > Jan. 2010: Begin spectroscopic survey
- > July 2014: End survey

Public data releases

QSO Selection with Photometry

Ch. Yèche et al. A&A 523, A14 (2010)

Challenging target selection

> QSOs and stars overlap: QSO with 2.2<z<3.5 are in the stellar locus > Many more stars than QSOs (x 200-500), worse at the edge of Galaxy > At z=2.4/3.3 Ly- α emission line falls between two band filters

EPS-HEP 2011

BOSS: Selection of Ly- α QSO Using Photometry

N. Ross et al., arXiv:1105.0606 (2011)

Target selection with Variability

N. Palanque-Delabrouille et al., A&A 530, A122 (2011) Intrinsic variability of QSOs (~90-95% of QSOs)
 QSO variability: Long period (~ few years)
 Possible background: variables stars, RR -Lyrae (tens of days)

Test with SDSS stripe 82 (observations over 7-9 years) with spectroscopically confirmed objects

Results:
 only for stripe 82 (220 deg²)
 ~28 deg⁻² QSOs with z>2.15
 Proof of principle for future surveys (e-BOSS, BigBOSS)

Status of the survey

On average ~4000 high-z QSOs per month
So far, ~92 000 new QSOs (including ~61 500 z>2.15 QSOs) over ~4000 deg²
This sample (1/3 of entire survey) will be DR9 (July 2012)
End of the survey: 150k - 200k high-z QSOs !!!

Proof of Principle -3D mapping of HI

A. Slosar et al., arXiv:1104.5244 (2011)

EPS-HEP 2011

Ly- α forests for BAO

Principles

Use Ly-α forests of quasars (2.2<z<4)
 HI absorption in IGM along the line of sight of QSOs
 We expect low density gas (IGM) to follow the dark matter density (validations : measured 1D power spectrum and N-body simulations...)

BAO specifications:

> 3D BAO: Correlation between the different lines of sight
> BAO measurement for z~2.5
> Better precision in radial direction (H(z) measurement).

Measurement of HI absorbed flux

Flux definition

Transmitted Flux Fraction F:
 Flux/Continuum 0<F<1:
 The power spectrum of the δ_F has the same shape as the power spectrum of matter density δ = ρ/p̄-1

Pedagogical example
> Single absorbing "cloud" at z_{cloud} with z_{cloud} ζ z_{qso}
> QSO Ly-α emission: 1216A(1+ z_{qso})
> HI "cloud" absorption: 1216A(1+ z_{cloud})
> In real life, many absorbing "clouds" + noise

QSO Ly- α Forest

A. Slosar et al., arXiv:1104.5244 (2011)

Typical BOSS QSO

Redshift z = 3.28
 Very noisy QSOs (on average SNR~1-2)
 $\lambda > \lambda_{Ly-\alpha}$: fluctuations from noise
 $\lambda < \lambda_{Ly-\alpha}$: fluctuations from noise and absorption

Data Set

Year one : 14000 QSOs,z>2.15
Demonstration of the method
Correlation function for r<100Mpc/h (below BAO scale)

Ch. Yèche

Ly- α absorption correlations

$$\xi_F(\vec{r}) = \left\langle \delta_F(\vec{x}) \cdot \delta_F(\vec{x} + \vec{r}) \right\rangle$$

Correlation Function

Correlations in HI seen to 50 Mpc/h

First observation in 3D of matter in IGM

Results consistent with ACDM simulations

Large-scale Redshift Distortions

Redshift Space

Acceleration toward overdense regions

Flattening in radial direction from real space to redshift space (over tens Mpc)

> Measurable with Kaiser formula

N. Kaiser MNRAS 227, 1 (1987)

$$P_F(\vec{k}) = P_F(k, \cos(\theta))$$
$$= b^2 P_L(k) \cdot (1 + \beta \cos(\theta)^2)^2$$

P_L(k) linear power
 spectrum

 $\boldsymbol{\cdot}\boldsymbol{\theta}$ angle between vector k and QSO line of sight

Large-scale Redshift Distortions

M. White et al., ApJ 728, 126 (2011) Redshift distortion clearly observed with 44000 LRGs
 <z>~0.6 in BOSS (spring 2010)
 Excellent agreement between data and N-body simulations

Flattening of (r_{tran}, r_{rad}) correlation function distribution

First observation of redshift distortion at z~2.5

Distortion are quantitatively measured by multi-poles decomposition

Correlation Function (multi-poles)

$$\xi_F(r,\cos(\theta)) = \sum_{\ell=0,2,4\dots} b^2 C_\ell \xi(r) P_\ell(\cos(\theta))$$

P_{I} : Legendre polynomials

Negative quadrupole as predicted by GR

> Gravity works at z~2.5

Gravity is forming structures at z~2.5

Results consistent with ACDM simulations

Ch. Yèche

Conclusions and Prospects

Largest 3-D map of the Distant Universe

A slice through the 3-D map of the universe

First 3-D map at so distant part (z~2.5) of Universe

> Proof that $Ly-\alpha$ absorption is a reliable techniques for cosmology

> Future maps 10 times bigger and BAO peak should be soon seen with Ly- α forests

BAO with BOSS

> 1/3 of the survey is already observed (~450k LRG and ~60k Ly- α QSOs for DR9)

- 0.7 ➤ Everything is in place to measure
 0.6 the Equation of State of Dark
 0.5 Energy with BOSS
 - With LRG: ~1.5M galaxies BAO scale: 1.0% at z~0.35 1.1% at z~0.6
 - With Ly-α forests: ~150k QSOs BAO scale: 1.7% at z~2.5