

A Search for Charged Massive Long-Lived Particles at D0

Sudeshna Banerjee Tata Institute of Fundamental Research For the DØ Collaboration

Europhysics Conference on High-Energy Physics Grenoble, France

21 – 27 July 2011

Sudeshna Banerjee Tata Institute of Fundamental Research

EPS July 2011

Motivation

Historically, the strange, long-lived kaons started a new era in particle physics.

Today some extensions of Standard Model and some SUSY models suggest the existence of another kind of massive long-lived particles (MLLP).

Existence of these particles could solve some of the puzzles that have no answers yet.

- Dark matter in the universe
- Charge quantization magnetic monopoles

 Lithium abundance (not explained by the present model of Big Bang Nucleosynthesis (BBN))

Possible solution – Existence of a MLLP that decays during or after the time of BBN

These massive long-lived particles can have different colour and electric charge

```
•q̃/g̃ (bound states – R hadrons)
•l̃ or χ̃<sup>+</sup>
```

Current results are on the search of Charged Long-Lived Particles (CMLLPs) at D0

Models

Supersymmetry (Susy) Models :

•The Lightest Supersymmetric Particle (LSP) is stable and must be neutral (cosmology)

•CMLLPs could be Next-to-Lightest Supersymmetric Particles (NLSPs)

•NLSPs can be long-lived due to weak coupling to LSP

CMLLPs considered in this analysis :

Staus - GMSB with stau NLSP (if stau →gravitino (LSP) decays suppressed)

```
Charginos - If there is a "wino-LSP" (small \tilde{\chi}_1^+ - \tilde{\chi}_1^0 mass difference), chargino
will have a long life time. Two extreme scenarios are explored.
1. chargino = gaugino
2. chargino = higgsino
Stops –
• if Stop is the lightest colored particle its decay will be suppressed
```

•Hidden Valley theories (stop LSP)

CMLLPs in the D0 Detector

Important properties for detection:

Charged Leaves a track in the tracker
Long-Lived Does not decay inside the detector
Massive Slow moving (large Time of Flight to muon system → small β, large energy deposit (dE/dx))

Acts like a muon but is heavier

Differences:

•Time Of Flight through the detector will be larger

•dE/dx will be larger

D0 Search:

•Examine events with one or more muons

Select events in which the muon looks like a CMLLP candidate

The DØ Experiment

D0 Muon System :

• Wire chambers for muon tracking and Scintillation counters for muon triggering

• 3 scintillator layers, A, B, and C, (1.8 T Toroid between A and B)

Good Time of Flight measurement

9 layers of Silicon in the central region Accurate momentum measurement dE/dx measurement

Signal, background, Data

Signal:

Pairs of CMLLPs Generated using PYTHIA Cascade decays are not included

- Stau, chargino (Higgsino and Gaugino type)
 100, 150, 200, 250, 300 GeV samples
- Stop
 - 100, 150, 200, 250, 300, 350, 400 GeV samples
 - Stop quarks are hadronized by linking an external routine with PYTHIA

Passage of the particles through the D0 detector is simulated with GEANT3

Background:

```
Mismeasured muons (wrong \beta and dE/dx)
Biggest source – W\rightarrow \mu V events
```

D0 Data:

5.2 fb⁻¹ of data, taken during June/2006 - June/2009) Use events triggered by a single high p_T (>20 GeV) muon

Event Selection Criteria

- Require at least one muon in the event
- If more than one muon, select the highest p_T muon
- Good quality isolated muon track
- Matched with a track in the Silicon Tracker
- $|\eta| < 1.6$ (limited by the tracker η coverage)
- p_T > 60 GeV (very effective for the W background)
 Speed (β) < 1,

[β is the weighted average of speeds related to scintillator hits]

Speed χ2 < 2</p>

Speed
$$\chi 2 \rightarrow \chi^2 = \frac{1}{i - 1} \sum_i \frac{(\beta - \beta_i)^2}{\sigma_i^2}$$

i = ith muon hit on a good muon track

Background sample

Since background is mostly $W \rightarrow \mu V$ events

- •Shape of the background is determined using W rich data ($m_T < 200 \text{ GeV}$)
- •Background normalization is done using a signal free data sample ($\beta > 1$)

Signal-Background Separation

p_T > 60 GeV reduces background

Speed (β) and dE/dx can be used to further distinguish background from signal events.

Timing and dE/dx are so calibrated that real muons are at β = dE/dx= 1

EPS July 2011

Unique Feature of Stop quarks

Road to CMLLP Detection

Use Multivariate Techniques - Boosted Decision Trees (BDT)

1)Train BDT on signal and background distributions to get weights 2)Apply weights to signal, background, and data distributions to get a "final variable" (BDT output) distribution

Use CLS method to get 95% confidence level cross-section limits

Input to the limit setting procedure are the BDT distribution and systematic errors

Variables for BDT:

Speed, dE/dx and related variables

- •Speed (β)
- •Speed significance
- [(1- β)/(uncertainty in β)]
- No. of scintillator hits in the muon system
 dE/dx
- •dE/dx significance
- [(dE/dX 1)/(uncertainty in dE/dx)]
- •No. of clusters in the Silicon Tracker

300 GeV Gaugino like Chargino

EPS July 2011

Input Variables to BDT

TMVA Correlation Matrix

Cross section Limits (D0 Preliminary)

NLO cross-sections and cross-section limits for staus.

Mass (GeV/c2)	NLO Cross-Section [pb]	95% CL Limit [pb]	Expected Limit 1s [pb]
100	0.0121	0.0400	0.0263 +0:0109 -0:0075
150	0.00214	0.0418	0.0164 +0:0062 -0:0035
200	0.0004799	0.0113	0.00671 +0:00122 -0:00061
250	0.000122	0.0132	0.00556 +0:00114 -0:00077
300	0.0000314	0.00581	0.00538 +0:00104 -0:00076

NLO cross-sections and cross-section limits for stops, assuming a charge survival probability of 38%.

NLO Cross-Section [pb]	95% CL Limit [pb]	Expected Limit 1s [pb]
15.6	0.562	0.218 +0.078 -0.062
1.58	0.133	0.049 +0.019 -0:0111
0.266	0.0529	0.0234 +0.0106 -0:0037
0.0560	0.0269	0.0201 +0.0090 -0.0050
0.0130	0.0794	0.0529 +0.0140 -0.0128
	NLO Cross-Section [pb] 15.6 1.58 0.266 0.0560 0.0130	NLO Cross-Section [pb]95% CL Limit [pb]15.60.5621.580.1330.2660.05290.05600.02690.01300.0794

Cross section Limits (D0 Preliminary)

NLO cross-sections and cross-section limits for gaugino-like charginos.

Mass (GeV/c2)	NLO Cross-Section [pb]	95% CL Limit [pb]	Expected Limit 1s [pb]
100	1.33	0.387	0.153 +0.068 -0:043
150	0.235	0.0435	0.0167 +0.0054 -0.0033
200	0.0566	0.0195	0.00945 +0.00368 -0.00057
250	0.0153	0.0136	0.00988 +0.00402 -0.00127
300	0.00417	0.0741	0.0185 +0.0046 -0.0027

NLO cross-sections and cross-section limits for higgsino-like charginos

Mass (GeV/c2)	NLO Cross-Section [pb]	95% CL Limit [pb]	Expected Limit 1s [pb]
100	0.381	0.106	0.110 +0.050 -0:032
150	0.0736	0.0417	0.0165 +0.0053 -0.0038
200	0.0186	0.0128	0.00852 +0.00169 -0.00112
250	0.00525	0.00897	0.00716 +0.00267 -0.00100
300	0.00154	0.0174	0.0119 +0.0033 -0.0005

Candidate Event – I

Tata Institute of Fundamental Research

Candidate Event - II

Run 247800 Evt 22550709 Wed Dec 3 21:56:18 2008

Summary

Searched for Charged Massive Long-Lived Particles in 5.2 fb⁻¹ of D0 data

Main variables for the Search:

Time of Flight of the particles through the D0 detector

Energy deposit (dE/dx) in the D0 Silicon Tracker

Mass and Cross-section limits (95% CL): D0 Preliminary

–265 GeV mass limit for stop

•281 GeV mass limit for stop (without charge flipping)

-251 GeV mass limit for gaugino like chargino

-230 GeV mass limit for higgsino like chargino

-stau cross-section limits between 0.04 and 0.006 pb,

for stau masses between 100 and 300 GeV

DØ public results:

http://www-d0.fnal.gov/Run2Physics/WWW/results.htm

Currently the Best Limits

Backup

Charged Massive Stable Particles

D0 Published Results

Data set – 1.1 fb-1 Cross section limit for Stable staus – 0.31 pb to 0.04 pb in the mass range 60 to 300 GeV

Mass limit for

Chargino (gaugino type) – 206 GeV Charginoh (Higgsino type) – 171 GeV

Published - PRL 102, 161802 (2009)

Cosmic Ray Muon rejection

Proton-Antiproton Collision

- •The highest p_T muon must have:
- -dca< 0.2 cm
- -(C-layer time) (A-layer time) > -10 ns
- If there are exactly 2 muons in event, event is rejected if
- -dca of either muon > 0.2 cm
- -| A layer time for Muon 1 A layer time for Muon 2| > 10 ns
- -The C-layer time minus the A-layer time for either muon < -10 ns.

-pseudo-acolinearity: $\Delta \alpha = |\Delta \phi + \Delta \theta - 2\pi| < 0.05$

Speed and dE/dx variables

•Speed and dE/dx variables are anticorrelated for signal

- They are not correlated for background
- They can be used to separate signal from background

Signal: 300 GeVgaugino-like chargino

Background: Single Muon Data, mT<200

EPS July 2011

Background Normalization

normalization region

B>1	Normalization background	Normalization data
β<1	Event background	Event data
	mT<200 GeV	mT>200 GeV

Normalized background = Backgroundevents*Normalization data events/ Normalization background events

With BDT>0.27 cut

Expected No. of Events

D0 Preliminary

Mass (GeV)	Signal Acceptance (%)	Predicted Background	Observed Data
100	0.74 ± 0.001 (stat.) ± 0.08 (sys.)	0 ± 0 (stat.) ± 0 (sys.)	0
150	$3.49 \pm 0.001 \pm 0.08$	$2.43 \pm 0.001 \pm 0.18$	4
200	$5.48 \pm 0.001 \pm 0.35$	$1.11 \pm 0.001 \pm 0.08$	2
250	$7.14 \pm 0.001 \pm 0.43$	$1.24 \pm 0.001 \pm 0.09$	7
300	$7.74 \pm 0.01 \pm 0.33$	$2.63 \pm 0.001 \pm 0.20$	3

Stop

Mass (GeV)	Signal Acceptance (%)	Predicted Background	Observed Data
100	0.01 ± 0.001 (stat.) ± 0.001 (sys.)	0 ± 0 (stat.) ± 0 (sys.)	0
150	$0.72 \pm 0.001 \pm 0.08$	$0.25 \pm 0.001 {\pm}~0.02$	2
200	$2.09 \pm 0.001 \pm 0.16$	$0.59 \pm 0.001 {\pm}~0.04$	3
250	$2.63 \pm 0.001 \pm 0.17$	$1.70 \pm 0.001 \pm 0.13$	1
300	$2.75 \pm 0.001 \pm 0.17$	$3.01 \pm 0.001 \pm 0.23$	2
350	$2.57 \pm 0.001 \pm 0.21$	$1.05 \pm 0.001 \pm 0.08$	4
400	$2.47 \pm 0.001 \pm 0.16$	$0.53 \pm 0.001 \pm 0.04$	1

Gaugino-like c	hargino
----------------	---------

Higgs	ino-l	ike	charg	gino
			···· c	

Mass (GeV)	Signal Acceptance (%)	Predicted Background	Observed Data
100	0 ± 0 (stat.) ± 0 (sys.)	$0\pm 0(\text{stat.})\pm 0(\text{sys.})$	0
150	$2.54 \pm 0.001 \pm 0.16$	$0.25 \pm 0.001 \pm 0.02$	2
200	$2.04 \pm 0.001 \pm 0.79$	$0.17 \pm 0.001 \pm 0.01$	0
250	$4.63 \pm 0.001 \pm 0.36$	$0.51 \pm 0.001 \pm 0.04$	1
300	$4.58 \pm 0.001 \pm 0.47$	$0.59 \pm 0.001 \pm 0.04$	1

Mass (GeV)	Signal Acceptance (%)	Predicted Background	Observed Data
100	0.29 ± 0.001 (stat.) ± 0.11 (sys.)	0 ± 0 (stat.) ± 0 (sys.)	0
150	$3.57 \pm 0.001 \pm 0.26$	$0.87 \pm 0.001 \pm 0.07$	3
200	$5.68 \pm 0.001 \pm 0.34$	$1.75 \pm 0.001 \pm 0.13$	5
250	$5.21 \pm 0.001 \pm 0.62$	$0.79 \pm 0.001 \pm 0.06$	2
300	$4.60 \pm 0.001 \pm 0.36$	$0.36 \pm 0.001 \pm 0.03$	0

Systematic uncertainties

• Flat Systematics

- Luminosity Uncertainty (6.1%)
- Muon ID Uncertainty (2.1%)
- Background Normalization Uncertainty from β cut (7.2%)
- Background Normalization Uncertainty from mT cut (2.2%)
- Muon pT Smearing Uncertainty (0.2%)
- PDF Uncertainty (<0.2%)
- dE/dx Correction Uncertainty (<0.1%)
- dE/dx Smearing Uncertainty (0.2%)
- Shape Systematics
- L1 Timing Gate Uncertainty
- Timing Smearing Uncertainty

Example Flat Systematic

Model Parameters

Staus

Parameter	Description					Value
Λ_m	Scale of SUSY breaking				1	9 to 100 TeV
M_m	Messenger mass scale					$2\Lambda_m$
N_5	Number of messenger fields					3
taneta	Ratio of Higgs VEVs					15
$sgn\mu$	Sign of Higgsino mass term					+1
C_{grav} Factor multiplying effective mass of gravitino 1						
Charginos						
Model	$\mu({ m GeV})$	$M_1(\text{GeV})$	$M_2({ m GeV})$	$M_3(\text{GeV})$	$tan\beta$	Squark Mass (GeV)
gaugino-like chargi	no 10,000	$3M_2$	varied from 60 to 300	500	15	800
higgsino-like chargi	no varied from 60 to 300	100,000	100,000	500	15	800