Recent BaBar results on *CP* violation in *B* decays

Denis Derkach

Laboratoire de l'Accélérateur Linéaire – ORSAY CNRS/IN2P3

EPS-HEP 2011 Grenoble, 21 July, 2011

Motivation and outline

γ measurements from B \rightarrow D^(*)K^(*)

Advantages: •Only tree decays. •Largely unaffected by the New Physics •Clear theoretical interpretation

Disadvantages: •Rare decays and low r_{B}

Related variables (depend on the *B* meson decay channel): $r_B = \frac{|A_{b \to u}|}{|A_{b \to c}|} < \frac{r_B \sim 0.1 \text{ For charged B mesons}}{r_B \sim 0.3 \text{ For neutral B mesons}}$ $\delta_{\rm B}$ strong phase (*CP* conserving)

Experimentally not easy to measure. Three ways to extract the information: •GLW •ADS •Dalitz

γ/φ_3 measurements with GLW

GLW method results

Large value of r_B is favored (but large uncertainty: less than 2σ from 0)

γ/φ_{3} measurements with ADS

ADS results ($D \rightarrow K\pi$)

ADS results ($D \rightarrow K \pi \pi^0$)

ADS results ($D \rightarrow K \pi \pi^0$)

Fit	R⁺	R⁻
PDF	+1.0*10 ⁻³	1.1*10 ⁻³
	-1.8*10 ⁻³	
same sign peaking bkg	2*10 ⁻⁴	5*10 ⁻⁴
opposite sign peaking bkg	+0 -3.6*10 ⁻³	+0 -3.6*10 ⁻³
Data-MC difference	6*10 ⁻⁴	6*10 ⁻⁴
BR uncertainties	2*10 ⁻⁴	6*10 ⁻⁴
Efficiency ratio	1*10 ⁻⁴	4*10 ⁻⁴
os <-> ss crossfeed	1*10 ⁻⁴	4*10 ⁻⁴
Total	+1.2*10 ⁻³	+1.6 [*] 10 ⁻³
	-4.1*10 ⁻³	-3.9*10 ⁻³

We measured:

$$R^{+} = \left(5^{+12}_{-10} {}^{+2}_{-4}\right) \times 10^{-2}$$
$$R^{-} = \left(12^{+12}_{-10} {}^{+3}_{-5}\right) \times 10^{-2}$$

Statistical errors dominate over systematical ones

This measurement allows us to put a limit $r_B < 14\%$ at 90% probability, thus, making the results competitive with the channels without π^0

This channel is less precise for gamma measurements (subject to lower k_D)

Conclusions

CP violation in B decays from BaBar:

- The structure of SM is well confirmed by the experiment
- Several analyses completed recently
- The results are being updated to the full (and reprocessed) data sample
- Some results with more then 3 sigma evidence are obtained in gamma sector.
- More information in other BaBar talks.

Backup

BaBar detector and recorded luminosity

