Recent *BABAR* measurements of hadronic *B* branching fractions

Alessandro Gaz University of Colorado

Representing the *BABAR* Collaboration

July 21st 2010 EPS 2011, Grenoble, France

Introduction

- Hadronic B Decays are fundamental tools to study the CKM Matrix paradigm and precisely measure its parameters;
- Benchmark to test the predictions of different theoretical frameworks: QCD factorization, perturbative QCD, SCET...;
- Measurement of rare decays can provide constraints on very suppressed amplitudes (e.g. weak annihilation) and on the existence of non-standard contributions;
- Decays of B mesons to final states containing baryons are in general poorly understood by the theory: experimental input can lead to the development of more reliable models;
- All the measurements I will present today are based on the full BaBar dataset, consisting of \sim 465 M BB pairs.

In this talk only decays with a charmed meson/baryon in the final state will be presented. For Charmless Hadronic Decays, please see Eugenia Puccio's transparencies in this morning's session.

Kinematics of B decays

 Fully reconstructed B mesons: two variables are commonly used (exploiting the precise knowledge of the beam energy):

• Dominant background: $q\bar{q}$ (q = u, d, s, c), exhibiting a jet-like topology ($B\bar{B}$ events are more "spherical"). We separate/suppress the continuum background combining several variables sensitive to the event shape into a Fisher discriminant.

$BF(B^+ \rightarrow D^+K^{(*)0})$

PRD 82, 092006 (2010)

- Motivations: neither of the constituent (anti)quarks appear in the final state. These decays proceed through weak annihilation diagrams;
- BF's expected to be of the order of $\sim 10^{-6}$, but rescattering (mainly through $D_s^{+}\pi^{0}$) may play a major role;
- We use $K^0 \to K_s^0 \to \pi^+\pi^-$, $K^{*0} \to K^+\pi^-$ and up to 4 D^+ decay modes $(K\pi\pi, K_s\pi, K\pi\pi^0, K_s\pi\pi^0)$;
- Dominant peaking background: $B^+ \rightarrow D^+ \rho^0$, reduced with a cut on the $\pi\pi$ helicity: we require $\cos\theta_{\rm H} < 0.9$ (0.8 for $K\pi\pi$);
- We expect less than 1 peaking background event in each signal region.

$BF(B^+ \rightarrow D^+K^{(*)0})$

- The signal yield is extracted through a ML fit on the variables m_{ES} and Fisher;
- The yields observed are compatible with 0;
- Dominant systematic uncertainty from parameterization of probability density functions;

• Results: significant improvement in the UL of $B \rightarrow D^+K^0$ over previous BaBar publication and first UL for $B \rightarrow D^+K^{*0}$:

$$\mathcal{B}(B^+ \to D^+ K^0) = (-3.8 \,{}^{+2.5}_{-2.4}) \times 10^{-6},$$

$$\mathcal{B}(B^+ \to D^+ K^{*0}) = (-5.3 \pm 2.7) \times 10^{-6},$$

$$\mathcal{B}(B^+ \to D^+ K^0) < 2.9 \times 10^{-6}$$

 $\mathcal{B}(B^+ \to D^+ K^{*0}) < 3.0 \times 10^{-6}$

Systematic uncertainties are included

EPS 2011

A. Gaz - University of Colorado

$\boldsymbol{B} \rightarrow \boldsymbol{D}^{(*)}\boldsymbol{D}^{(*)}\boldsymbol{K}$

- Motivation: $B \rightarrow D^{(*)}D^{(*)}K$ decays have a sizable branching fraction (a few %), important to account for the inclusive hadronic branching fraction;
- Several different amplitudes concur, important to verify that the pattern matches the predictions;

PRD-RC 83, 032004 (2011)

Neutral B mode	Charged B mode
$B^0 \to D^- D^0 K^+$	$B^+ \to \overline{D}{}^0 D^+ K^0$
$B^0 \to D^- D^{*0} K^+$	$B^+ \to \overline{D}{}^0 D^{*+} K^0$
$B^0 \to D^{*-} D^0 K^+$	$B^+ \to \overline{D}^{*0} D^+ K^0$
$B^0 \to D^{*-} D^{*0} K^+$	$B^+ \to \overline{D}^{*0} D^{*+} K^0$
$B^0 \to D^- D^+ K^0$	$B^+ \to \overline{D}{}^0 D^0 K^+$
$B^0 \to D^- D^{*+} K^0 + D^{*-} D^+ K^0$	$B^+ \to \overline{D}{}^0 D^{*0} K^+$
	$B^+ \to \overline{D}^{*0} D^0 K^+$
$B^0 \to D^{*-} D^{*+} K^0$	$B^+ \to \overline{D}^{*0} D^{*0} K^+$
$B^0 o \overline{D}{}^0 D^0 K^0$	$B^+ \to D^- D^+ K^+$
$B^0 \to \overline{D}{}^0 D^{*0} K^0 + \overline{D}{}^{*0} D^0 K^0$	$B^+ \to D^- D^{*+} K^+$
	$B^+ \to D^{*-}D^+K^+$
$B^0 \rightarrow \overline{D}^{*0} D^{*0} K^0$	$B^+ \rightarrow D^{*-} D^{*+} K^+$

- 22 decay modes: since cross-feed $\underline{\xrightarrow{B^0 \to \overline{D}^{*0}D^{*0}K^0}}_{\text{is an issue (mostly from loosing the soft pion from the decay of the <math>D^*$) it is fundamental to measure all the branching fractions in the same analysis;
- Events selected with tight cuts on the masses of the intermediate resonances and ΔE ;
- Signal extracted through an unbinned ML fit on the m_{ES} variable.

$\boldsymbol{B} \rightarrow \boldsymbol{D}^{(*)}\boldsymbol{D}^{(*)}\boldsymbol{K}$

Charged modes

Neutral modes

A. Gaz - University of Colorado

- The amount of cross-feed in each channel is obtained with an iterative procedure which takes into account the branching fractions of all the other channels in the previous iteration;
- The peaking background is fixed using the MC predictions;
- Some decays proceed through resonances: in computing the BF's we take into account the variations of efficiency across the D^(*)D^(*)K Dalitz Plot;
- Combining all modes:

$$BF(B^{0} \rightarrow D^{(*)}D^{(*)}K) = (3.68 \pm 0.10 \pm 0.24)\%$$

BF(B⁺ $\rightarrow D^{(*)}D^{(*)}K$) = (4.05 ± 0.11 ± 0.28)%

The full results table is in the backup slides

• No evidence of isospin breaking has been observed.

$\boldsymbol{B} \to \boldsymbol{D}^{(*)0} \boldsymbol{h}^0$

g

To be submitted to PRD

- $h^{0} = \pi^{0}, \omega, \eta, \eta';$
- Color suppressed decays, evidence for non-factorizable contributions;
- $B^- \rightarrow D^{(*)0} \rho^-$ is used as data control sample (and constitutes a source of peaking background for the π^0 modes);
- Crossfeed estimated with an iterative procedure;
- Signal yields extracted with an unbinned ML fit to the ΔE variable.

A. Gaz – University of Colorado

$\boldsymbol{B} \rightarrow \boldsymbol{D}^{(*)0} \boldsymbol{h}^0$

- Branching fractions compatible with other experiments;
- BF(B→D^{*0}h⁰)/BF(B→D⁰h⁰) consistent with 1, within 30% uncertainty, as predicted by SCET;

- For the $D^{*0}\omega$ mode, we also measure the longitudinal polarization fraction f_{L} . This is useful for a correct determination of the reconstruction efficiency and to study potential long-range contributions predicted by SCET which tend to decrease f_{L} ;
- Result: $f_{L} = (66.5 \pm 4.7 \pm 1.5)\%$

significantly lower than HQET predictions ($f_1 \sim 90\%$).

B → baryons - Motivations

- BF($B \rightarrow$ baryons) ~ 7%, but the sum of the known modes accounts for ~1%;
- In general, B → baryons decays are poorly understood theoretically, the study of as many exclusive decay modes as possible may provide insight on the different decay mechanisms;
- $B \rightarrow$ baryons decays may provide evidence of new/poorly known resonances;
- Threshold enhancement on the baryon-antibaryon invariant mass has been observed in several cases;
- Today:
 - → Measurement of $BF(B \rightarrow \Lambda_c \ \overline{p} \ \pi^0)$ PRD-RC 82, 031102 (2010)
 - → Measurement of $BF(B \to \Lambda_c \overline{\Lambda} K^-)$ To be submitted to PRD-RC

 $^{\prime} \rightarrow \Lambda_{p} \pi^{\prime}$

- Previous UL by CLEO (BF < 5.9 x 10^{-4});
- We reconstruct $\Lambda_c \rightarrow p \ K^- \pi^+$ (uncertainty on its BF is the dominant error);
- Peaking background: $B \rightarrow \Lambda_c \ \overline{p} \ \pi^-$, suppressed vetoing events with a $\pi^$ candidate compatible with this decay;
- Signal yield extracted from a fit to m_{FS};
- Result:

 $\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^0) = (1.94 \pm 0.17 \pm 0.14 \pm 0.50) \times 10^{-4}$

(compatible with its isospin conjugate)

• No evidence of $B \to \Sigma_c \overline{p}$.

1 *N K*-

BABAR

preliminary

0.1

- Signal yield: 51 ± 9 events (significance 8σ);
- Peaking background $B \to \Lambda_c \,\overline{p} \,\pi^+ \,K^$ suppressed with a -0.2 -0.1 cut on the distance of the Λ vertex;
- In the measurement of the BF, the efficiency is corrected accounting for the distribution of the invariant masses that we observe on the data;

ents / (0.01 GeV

- Enhancement in m(Λ_{κ}^{-});
- Result:

 $\mathcal{B}(\overline{B}{}^0 \to \Lambda_c^+ \overline{\Lambda} K^-) = (3.8 \pm 0.9_{\text{stat}} \pm 0.2_{\text{sys}} \pm 1.0_{\Lambda^+}) \times 10^{-5}$

Events/140 MeV/c BABAR preliminary $m(\Lambda_c \Lambda) [GeV/c^2]$ vents/140 MeV/c ΔE (GeV) 15 2.8 2.2 2.4 2.6 $m(\Lambda K) [GeV/c^2]$ Events/140 MeV/c²

3.4

3.6

Νον

EPS 2011

A. Gaz – University of Colorado

3.8

 $m(\Lambda_c K) [GeV/c^2]$

Conclusions

- After three years from the end of data taking, BaBar keeps producing interesting physics results;
- The precision measurement of Hadronic B Decays will help constraining standard and non-standard contributions in different theoretical frameworks;
- Most of the measurements I presented today are limited by statistics: plenty of room for improvement for the next generation of *B*-factories.

Backup Slides

The PEP-II Collider

The BABAR detector

$BF(B^+ \rightarrow D^+K^{(*)0})$

Decay mode	$N_{ m sig}$	$N_{B\overline{B}}$	$N_{ m cont}$	B
$B^+ \to D^+ K^0$				
$K\pi\pi$	$-11.9 \begin{array}{c} + & 6.7 \\ - & 5.6 \end{array}$	70 ± 27	2690 ± 57	$-4.2 \stackrel{+}{_{-2.0}} \stackrel{2.4}{_{-2.0}}$
$K\pi\pi\pi^0$	$10\ {+}{}^{+}_{-}\ {}^{10}_{9}$	111 ± 51	6516 ± 94	$20\ {+}{}^{+}_{-}\ {}^{20}_{17}$
$K^0_S\pi$	$0.6 \ + \ 5.3 \ - \ 4.5$	20 ± 14	381 ± 23	$0.7 \ {}^{+}_{-} \ {}^{15}_{13}$
$K^0_S\pi\pi^0$	$-6.7 \stackrel{+}{_{-}} \stackrel{4.5}{_{-}} \stackrel{-}{_{-}} $	36 ± 22	1270 ± 41	$-14 \begin{array}{c} + & 9.2 \\ - & 6.2 \end{array}$
combined	-	-	-	$-3.4 \stackrel{+}{_{-}} \stackrel{2.2}{_{-}} \stackrel{-}{_{-}} \stackrel{2.2}{_{-}}$
$B^+ \to D^+ K^{*0}$				
$K\pi\pi$	$-15.6 \stackrel{+}{_{-}} \stackrel{8.7}{_{-}}$	463 ± 63	6338 ± 98	$-5.0 \ {}^{+}_{-} \ {}^{2.9}_{2.1}$
$K^0_S\pi$	$-11.4 \stackrel{+}{_{-}} \stackrel{3.5}{_{-2.4}}$	35 ± 15	547 ± 27	$-33 {}^{+}_{-} {}^{10.2}_{7.0}$
combined	-	-	-	$-5.3 \begin{array}{c} + & 2.3 \\ - & 2.0 \end{array}$

$B \rightarrow D^{(*)}D^{(*)}K$ - Results

Mode	$N_{ m S}$	$N_{\rm PB}$	$N_{\rm CF}^{ m SR}$	B	Significance				
B^0 decays through external W-emission amplitudes									
$B^0 \to D^- D^0 K^+$	635 ± 47	99 ± 54	65	$10.7 \pm 0.7 \pm 0.9$	8.6σ				
$B^0 \to D^- D^{*0} K^+$	1116 ± 64	250 ± 69	137	$34.6 \pm 1.8 \pm 3.7$	7.6σ				
$B^0 \to D^{*-} D^0 K^+$	1300 ± 54	93 ± 40	78	$24.7 \pm 1.0 \pm 1.8$	12.6σ				
$B^0 \to D^{*-} D^{*0} K^+$	1883 ± 63	31 ± 28	112	$106.0 \pm 3.3 \pm 8.6$	11.4σ				
B^0 decays through external+internal W-emission amplitudes									
$B^0 \to D^- D^+ K^0$	58 ± 10	8 ± 11	2	$7.5 \pm 1.2 \pm 1.2$	5.1σ				
$B^0 \to D^- D^{*+} K^0 + D^{*-} D^+ K^0$	422 ± 25	0 ± 12	7	$64.1 \pm 3.6 \pm 3.9$	13.4σ				
$B^0 \to D^{*-} D^{*+} K^0$	511 ± 27	20 ± 13	5	$82.6 \pm 4.3 \pm 6.7$	12.5σ				
	B^0 decays through internal W-emission amplitudes								
$B^0 \to \overline{D}{}^0 D^0 K^0$	46 ± 19	15 ± 19	19	$2.7 \pm 1.0 \pm 0.5$	2.3σ				
$B^0 \to \overline{D}{}^0 D^{*0} K^0 + \overline{D}{}^{*0} D^0 K^0$	126 ± 39	70 ± 39	147	$10.8 \pm 3.2 \pm 3.6$	2.2σ				
$B^0 \to \overline{D}^{*0} D^{*0} K^0$	170 ± 49	58 ± 31	231	$24.0 \pm 5.5 \pm 6.7$	2.2σ				
	B^+ decays thro	ugh external W-	emission an	nplitudes					
$B^+ \to \overline{D}{}^0 D^+ K^0$	237 ± 30	40 ± 23	16	$15.5 \pm 1.7 \pm 1.3$	6.6σ				
$B^+ \to \overline{D}{}^0 D^{*+} K^0$	233 ± 19	9 ± 10	17	$38.1 \pm 3.1 \pm 2.3$	10.7σ				
$B^+ \to \overline{D}^{*0} D^+ K^0$	164 ± 37	48 ± 33	95	$20.6 \pm 3.8 \pm 3.0$	3.3σ				
$B^+ \to \overline{D}^{*0} D^{*+} K^0$	308 ± 28	11 ± 12	113	$91.7 \pm 8.3 \pm 9.0$	7.5σ				
B^+ decays through external+internal W-emission amplitudes									
$B^+ \to \overline{D}{}^0 D^0 K^+$	901 ± 54	173 ± 77	153	$13.1 \pm 0.7 \pm 1.2$	8.6σ				
$B^+ \to \overline{D}{}^0 D^{*0} K^+$	2180 ± 74	92 ± 50	409	$63.2 \pm 1.9 \pm 4.5$	12.5σ				
$B^+ \to \overline{D}^{*0} D^0 K^+$	745 ± 60	61 ± 26	724	$22.6 \pm 1.6 \pm 1.7$	8.3σ				
$B^+ \to \overline{D}^{*0} D^{*0} K^+$	3530 ± 141	186 ± 65	928	$112.3 \pm 3.6 \pm 12.6$	6.8σ				
B^+ decays through internal W-emission amplitudes									
$B^+ \to D^- D^+ K^+$	60 ± 15	35 ± 20	7	$2.2 \pm 0.5 \pm 0.5$	2.8σ				
$B^+ \to D^- D^{*+} K^+$	91 ± 13	2 ± 7	10	$6.3 \pm 0.9 \pm 0.6$	6.7σ				
$B^+ \to D^{*-}D^+K^+$	75 ± 13	15 ± 9	6	$6.0 \pm 1.0 \pm 0.8$	5.1σ				
$\underline{B^+ \to D^{*-} D^{*+} K^+}$	232 ± 23	30 ± 14	31	$13.2 \pm 1.3 \pm 1.2$	7.4σ				

EPS 2011

A. Gaz – University of Colorado

$\boldsymbol{B} \rightarrow \boldsymbol{D}^{(*)0} \boldsymbol{h}^{0}$

A. Gaz - University of Colorado

EPS 2011