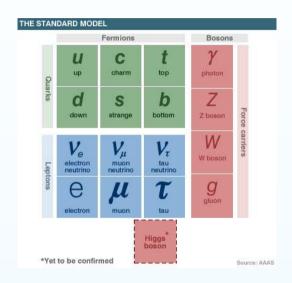
The Asymptotic Safety Program for Quantum Gravity

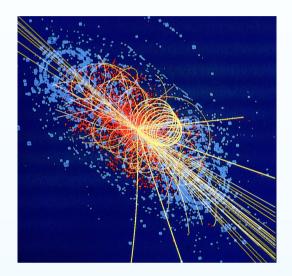
Frank Saueressig

Group for Theoretical High Energy Physics (THEP)
Institute of Physics

International Europhysics Conference for High Energy Physics Grenoble, Rhône-Alpes France, July 21-27 2011

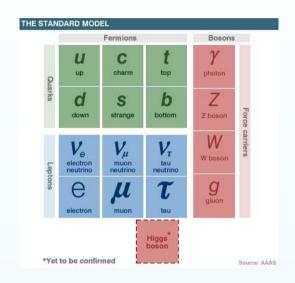
standard model of particle physics:

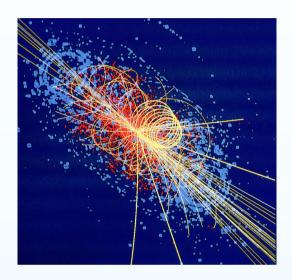




- describes: electromagnetic/strong/weak force + interactions with matter
- extremely well tested

standard model of particle physics:



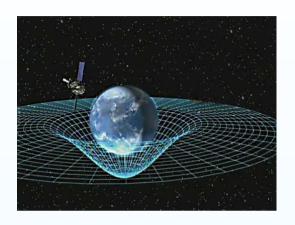


- describes: electromagnetic/strong/weak force + interactions with matter
- extremely well tested

theoretical basis: quantum field theory

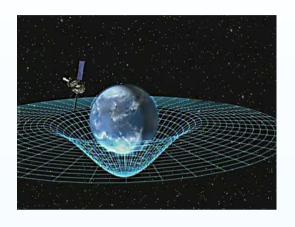
- includes only relevant and marginal couplings
 - ⇒ renormalizable quantum field theory

General Relativity:



- describes: gravity + interactions with matter
- extremely well tested

General Relativity:



- describes: gravity + interactions with matter
- extremely well tested

theoretical basis: classical theory

$$\underbrace{R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R}_{\text{space-time curvature}} = \underbrace{-\Lambda g_{\mu\nu} + 8\pi G_N \, T_{\mu\nu}}_{\text{matter content}}$$

• Newton constant G_N has negative mass-dimension

⇒ perturbatively non-renormalizable quantum field theory

perturbative quantization of General Relativity:

- G_N has negative mass-dimension:
 - infinite number of counterterms
 - General Relativity is perturbatively non-renormalizable

- a) Treat General Relativity as effective field theory:
 - compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
 - breaks down at $E^2 pprox M_{
 m Pl}^2$

perturbative quantization of General Relativity:

- G_N has negative mass-dimension:
 - infinite number of counterterms
 - General Relativity is perturbatively non-renormalizable

- a) Treat General Relativity as effective field theory:
 - compute corrections in $E^2/M_{\rm Pl}^2\ll 1$ (independent of UV-completion)
 - breaks down at $E^2pprox M_{
 m Pl}^2$
- b) UV-completion requires new physics:
 - supersymmetry, extra dimensions, . . .
 - possibly: extension of QFT-framework

perturbative quantization of General Relativity:

- G_N has negative mass-dimension:
 - infinite number of counterterms
 - General Relativity is perturbatively non-renormalizable

- a) Treat General Relativity as effective field theory:
 - compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
 - breaks down at $E^2pprox M_{
 m Pl}^2$
- b) UV-completion requires new physics:
 - supersymmetry, extra dimensions, . . .
 - possibly: extension of QFT-framework
- c) Gravity makes sense as Quantum Field Theory:
 - UV-completion requires going beyond perturbation theory

perturbative quantization of General Relativity:

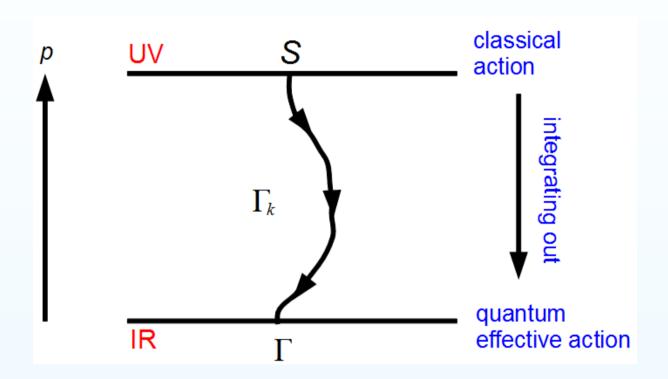
- G_N has negative mass-dimension:
 - infinite number of counterterms
 - General Relativity is perturbatively non-renormalizable

- a) Treat General Relativity as effective field theory:
 - compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
 - breaks down at $E^2 pprox M_{
 m Pl}^2$
- b) UV-completion requires new physics:
 - supersymmetry, extra dimensions, . . .
 - possibly: extension of QFT-framework
- c) Gravity makes sense as Quantum Field Theory:
 - UV-completion requires going beyond perturbation theory

Wilsonian renormalization and asymptotic safety basic concepts

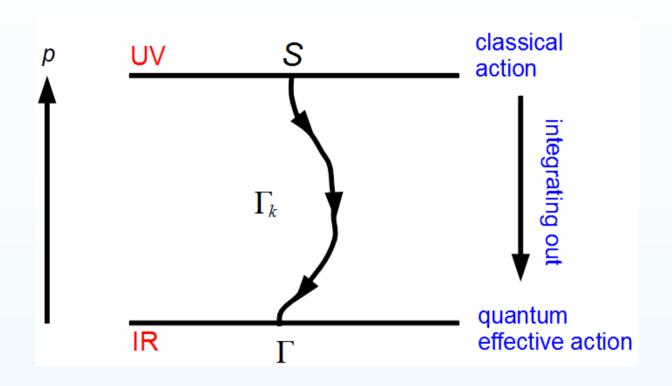
Wilson's modern picture of renormalization

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space



Wilson's modern picture of renormalization

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space



implementation:

- action with scale-dependent couplings (G_N, Λ, \ldots) : $g_i(k)$
- scale-dependence governed by β -functions: $k\partial_k g_i = \beta_{g_i}(\{g_i\})$

Ensuring good UV-behavior: fixed points of the RG-flow

amplitudes depend on dimensionless couplings only

• RG-flow for dimensionless running couplings: $g_i(k)$

Fixed points g_i^* :

$$eta$$
 -functions vanish: $eta_{g_i}(\{g_i^*\}) \stackrel{!}{=} 0$

 g_i^* remain finite

- RG-trajectory captured by fixed point in UV:
 - ⇒ physical quantities remain free of unphysical divergences

Ensuring good UV-behavior: fixed points of the RG-flow

amplitudes depend on dimensionless couplings only

• RG-flow for dimensionless running couplings: $g_i(k)$

Fixed points g_i^* :

• β -functions vanish:

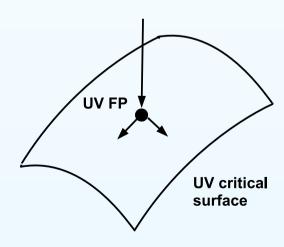
$$\beta_{g_i}(\{g_i^*\}) \stackrel{!}{=} 0$$

 g_i^* remain finite

- RG-trajectory captured by fixed point in UV:
 - ⇒ physical quantities remain free of unphysical divergences

Concepts associated with UV-fixed points:

- trajectories emanating from fixed point in UV
 span UV critical surface
- predictivity:
 - ≡ UV critical surface has finite dimension



Renormalization: asymptotic freedom and asymptotic safety

Wilsonian formulation:

- UV fixed points allow two classes of renormalizable Quantum Field Theories
- Gaussian Fixed Point (GFP):
 - perturbatively renormalizable field theories
 - UV-limit: free theory
 - asymptotic freedom (example: QCD)

Renormalization: asymptotic freedom and asymptotic safety

Wilsonian formulation:

- UV fixed points allow two classes of renormalizable Quantum Field Theories
- Gaussian Fixed Point (GFP):
 - perturbatively renormalizable field theories
 - UV-limit: free theory
 - asymptotic freedom (example: QCD)
- non-Gaussian Fixed Point (NGFP):
 - non-perturbatively renormalizable field theories
 - UV-limit: interacting theory
 - asymptotic safety

Renormalization: asymptotic freedom and asymptotic safety

Wilsonian formulation:

- UV fixed points allow two classes of renormalizable Quantum Field Theories
- Gaussian Fixed Point (GFP):
 - perturbatively renormalizable field theories
 - UV-limit: free theory
 - asymptotic freedom (example: QCD)
- non-Gaussian Fixed Point (NGFP):
 - non-perturbatively renormalizable field theories
 - UV-limit: interacting theory
 - asymptotic safety

Wilsonian picture: generalization of perturbative renormalization asymptotic safety as predictive as asymptotic freedom

Examples: Asymptotically Safe Theories

Theories with non-Gaussian UV fixed point

• O(N)-sigma model $(d = 2 + \epsilon)$

[Brézin, Zinn-Justin '76]

- critical exponents of Heisenberg ferromagnets
- Gross-Neveu model $(d = 2 + \epsilon)$

[Gawedzki, Kupiainen '85]

• Grosse-Wulkenhaar model (non-commutative ϕ^4 -theory)

[Grosse, Wulkenhaar '05; Disertori, Gurau, Magnen, Rivasseau '07]

• Gravity in $2 + \epsilon$ dimensions

[Christensen, Duff; Gastmans, Kallosh, Truffin '78]

Examples: Asymptotically Safe Theories

Theories with non-Gaussian UV fixed point

• O(N)-sigma model $(d=2+\epsilon)$

[Brézin, Zinn-Justin '76]

- critical exponents of Heisenberg ferromagnets
- Gross-Neveu model $(d = 2 + \epsilon)$

[Gawedzki, Kupiainen '85]

• Grosse-Wulkenhaar model (non-commutative ϕ^4 -theory)

[Grosse, Wulkenhaar '05; Disertori, Gurau, Magnen, Rivasseau '07]

• Gravity in $2 + \epsilon$ dimensions

[Christensen, Duff; Gastmans, Kallosh, Truffin '78]

Weinberg's asymptotic safety conjecture (1979):

gravity in d=4 has non-Gaussian UV fixed point

Renormalizing gravity

Wilsonian formulation:

- UV fixed points allow two classes of renormalizable Quantum Field Theories
- Gaussian Fixed Point (GFP):
 - perturbatively renormalizable field theories
 - UV-limit: free theory
 - asymptotic freedom

- non-Gaussian Fixed Point (NGFP):
 - non-perturbatively renormalizable field theories
 - UV-limit: interacting theory
 - asymptotic safety

Weinberg's asymptotic safety conjecture (1979):

gravity in d = 4 has non-Gaussian UV fixed point

Testing asymptotic safety:

Functional Renormalization Group Equations (FRG)

Causal Dynamical Triangulations (CDT)

Functional Renormalization Group Equation for gravity

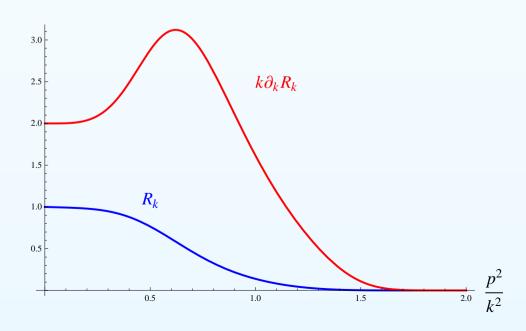
[C. Wetterich, Phys. Lett. **B301** (1993) 90]

[M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030]

scale-dependence of Γ_k governed by exact RG equation

$$k\partial_k \Gamma_k[\phi, \bar{\phi}] = \frac{1}{2} \text{Tr} \left[\left(\frac{\delta^2 \Gamma_k}{\delta \phi \delta \phi} + \mathcal{R}_k \right)^{-1} k \partial_k \mathcal{R}_k \right]$$

• $\mathcal{R}_k(p^2)$ = IR momentum-cutoff at scale k



Functional Renormalization Group Equation for gravity

[C. Wetterich, Phys. Lett. **B301** (1993) 90]

[M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030]

scale-dependence of Γ_k governed by exact RG equation

$$k\partial_k \Gamma_k [\phi, \bar{\phi}] = \frac{1}{2} \text{Tr} \left[\left(\frac{\delta^2 \Gamma_k}{\delta \phi \delta \phi} + \mathcal{R}_k \right)^{-1} k \partial_k \mathcal{R}_k \right]$$

limits of the RG-flow:

• $k = \Lambda$: initial (boundary) condition

$$\Gamma_{k=\Lambda} = \Gamma_{\Lambda}$$

• k = 0: all quantum fluctuations integrated out

$$\Gamma_{k=0} = \Gamma$$

$$\Gamma = \Gamma_{\Lambda} + \lim_{k \to 0} \int_{\Lambda}^{k} d\hat{k} \, \partial_{\hat{k}} \Gamma_{\hat{k}} \left[\Gamma_{\hat{k}}^{(2)}, \mathcal{R}_{\hat{k}} \right]$$

in between:

regulator ensures finiteness of flow

Functional Renormalization Group Equation for gravity

[C. Wetterich, Phys. Lett. **B301** (1993) 90]

[M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030]

scale-dependence of Γ_k governed by exact RG equation

$$k\partial_k \Gamma_k[\phi, \bar{\phi}] = \frac{1}{2} \text{Tr} \left[\left(\frac{\delta^2 \Gamma_k}{\delta \phi \delta \phi} + \mathcal{R}_k \right)^{-1} k \partial_k \mathcal{R}_k \right]$$

renormalizability:

• if $\Gamma_{\Lambda \to \infty} = \Gamma_*$ exists, Γ_* qualifies as fundamental theory

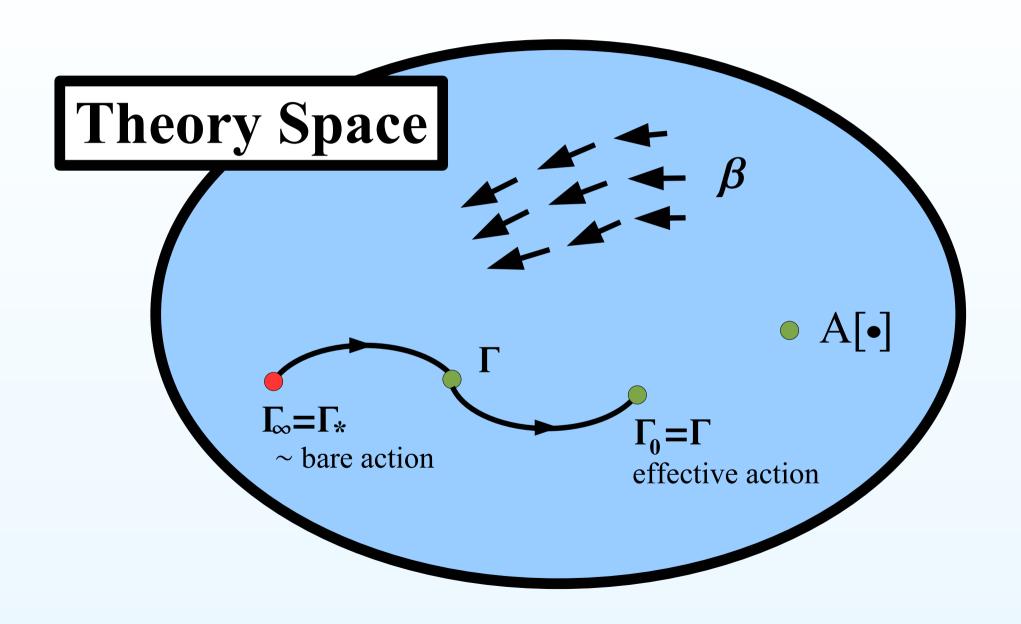
 \circ perturbatively renormalizable theory: Γ_* is free theory (e.g. QCD)

 \circ non-perturbatively renormalizable theory: Γ_* is interacting

 \circ non-renormalizable: Γ_* does not exist

predictivity: provided by fixed point

Theory space underlying the Functional Renormalization Group



Non-perturbative approximation: derivative expansion of Γ_k

caveat: FRGE cannot be solved exactly

⇔ gravity: need non-perturbative approximation scheme

Non-perturbative approximation: derivative expansion of Γ_k

- caveat: FRGE cannot be solved exactly
 - ⇔ gravity: need non-perturbative approximation scheme
- expand Γ_k in derivatives and truncate series:

$$\Gamma_k[\Phi] = \sum_{i=1}^{N} \bar{u}_i(k) \, \mathcal{O}_i[\Phi]$$

- ⇒ substitute into FRGE
- \implies projection of flow gives β -functions for running couplings

$$k\partial_k \bar{u}_i(k) = \beta_i(\bar{u}_i; k)$$

Non-perturbative approximation: derivative expansion of Γ_k

- caveat: FRGE cannot be solved exactly
 - ⇔ gravity: need non-perturbative approximation scheme
- expand Γ_k in derivatives and truncate series:

$$\Gamma_k[\Phi] = \sum_{i=1}^{N} \bar{u}_i(k) \, \mathcal{O}_i[\Phi]$$

- ⇒ substitute into FRGE
- \implies projection of flow gives β -functions for running couplings

$$k\partial_k \bar{u}_i(k) = \beta_i(\bar{u}_i; k)$$

- testing the reliability:
 - within a given truncation: cutoff-scheme dependence of physical quantities (= vary \mathcal{R}_k)
 - stability of results within extended truncations

Letting things flow The Einstein-Hilbert truncation

The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), $\Lambda(k)$

$$\Gamma_k = \frac{1}{16\pi G(k)} \int d^4x \sqrt{g} \left[-R + 2\Lambda(k) \right] + S^{\text{gf}} + S^{\text{gh}}$$

• project flow onto G- Λ -plane

The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), $\Lambda(k)$

$$\Gamma_k = \frac{1}{16\pi G(k)} \int d^4x \sqrt{g} \left[-R + 2\Lambda(k) \right] + S^{\text{gf}} + S^{\text{gh}}$$

• project flow onto G- Λ -plane

explicit β -functions for dimensionless couplings $g_k:=k^2G(k)\,,\;\lambda_k:=\Lambda(k)k^{-2}$

• Particular choice of \mathcal{R}_k (optimized cutoff)

$$k\partial_k g_k = (\eta_N + 2)g_k,$$

$$k\partial_k \lambda_k = -(2 - \eta_N) \lambda_k - \frac{g_k}{2\pi} \left[5 \frac{1}{1 - 2\lambda_k} - 4 - \frac{5}{6} \frac{1}{1 - 2\lambda_k} \eta_N \right]$$

• anomalous dimension of Newton's constant:

$$\eta_N = \frac{gB_1}{1 - gB_2}$$

$$B_1 = \frac{1}{3\pi} \left[5 \frac{1}{1 - 2\lambda} - 9 \frac{1}{(1 - 2\lambda)^2} - 7 \right], B_2 = -\frac{1}{12\pi} \left[5 \frac{1}{1 - 2\lambda} + 6 \frac{1}{(1 - 2\lambda)^2} \right]$$

$$eta$$
-functions for $g_k:=k^2G(k)\,,\; \lambda_k:=\Lambda(k)k^{-2}$
$$k\partial_k g_k=(\eta_N\,+2)g_k\,,$$

$$k\partial_k \lambda_k=-\left(2-\eta_N\right)\lambda_k-rac{g_k}{2\pi}\left[5rac{1}{1-2\,\lambda_k}-4-rac{5}{6}rac{1}{1-2\lambda_k}\eta_N
ight]$$

microscopic theory \iff fixed points of the β -functions

$$\beta_g(g^*, \lambda^*) = 0$$
, $\beta_\lambda(g^*, \lambda^*) = 0$

$$eta$$
-functions for $g_k:=k^2G(k)\,,\; \lambda_k:=\Lambda(k)k^{-2}$
$$k\partial_k g_k=(\eta_N\,+2)g_k\,,$$

$$k\partial_k \lambda_k=-\left(2-\eta_N\right)\lambda_k-\frac{g_k}{2\pi}\left[5\frac{1}{1-2\,\lambda_k}-4-\frac{5}{6}\,\frac{1}{1-2\lambda_k}\eta_N\right]$$

microscopic theory \iff fixed points of the β -functions

$$\beta_g(g^*, \lambda^*) = 0$$
, $\beta_\lambda(g^*, \lambda^*) = 0$

- Gaussian Fixed Point:
 - \circ at $g^* = 0, \lambda^* = 0 \iff$ free theory
 - saddle point in the g- λ -plane

$$\beta\text{-functions for }g_k:=k^2G(k)\,,\;\lambda_k:=\Lambda(k)k^{-2}$$

$$k\partial_k g_k = (\eta_N + 2)g_k \,,$$

$$k\partial_k \lambda_k = -(2 - \eta_N) \lambda_k - \frac{g_k}{2\pi} \left[5 \frac{1}{1 - 2\lambda_k} - 4 - \frac{5}{6} \frac{1}{1 - 2\lambda_k} \eta_N \right]$$

microscopic theory \iff fixed points of the β -functions

$$\beta_g(g^*, \lambda^*) = 0$$
, $\beta_\lambda(g^*, \lambda^*) = 0$

- Gaussian Fixed Point:
 - \circ at $g^* = 0, \lambda^* = 0 \iff$ free theory
 - saddle point in the g- λ -plane
- non-Gaussian Fixed Point ($\eta_N^* = -2$):
 - at $g^* > 0, \lambda^* > 0 \iff$ "interacting" theory
 - UV attractive in g_k, λ_k

$$eta$$
-functions for $g_k:=k^2G(k)\,,\; \lambda_k:=\Lambda(k)k^{-2}$
$$k\partial_k g_k=(\eta_N\,+2)g_k\,,$$

$$k\partial_k \lambda_k=-\left(2-\eta_N\right)\lambda_k-rac{g_k}{2\pi}\left[5rac{1}{1-2\,\lambda_k}-4-rac{5}{6}rac{1}{1-2\lambda_k}\eta_N
ight]$$

microscopic theory \iff fixed points of the β -functions

$$\beta_g(g^*, \lambda^*) = 0$$
, $\beta_\lambda(g^*, \lambda^*) = 0$

- Gaussian Fixed Point:
 - \circ at $g^* = 0, \lambda^* = 0 \iff$ free theory
 - saddle point in the g- λ -plane
- non-Gaussian Fixed Point ($\eta_N^* = -2$):
 - at $g^* > 0, \lambda^* > 0 \iff$ "interacting" theory
 - UV attractive in g_k, λ_k

Asymptotic safety: non-Gaussian Fixed Point is UV completion for gravity

Einstein-Hilbert truncation: Stability properties

Ref.	g^*	λ^*	$g^*\lambda^*$	$ heta' \pm i heta''$	gauge	\mathcal{R}_k
BMS	0.902	0.109	0.099	$2.52 \pm 1.78i$	geometric	II, opt
RS	0.403	0.330	0.133	$1.94 \pm 3.15i$	harmonic	I, sharp
LR	0.272	0.348	0.095	$1.55 \pm 3.84i$	harmonic	I, exp
	0.344	0.339	0.117	$1.86 \pm 4.08i$	Landau	I, exp
L	1.17	0.25	0.295	$1.67 \pm 4.31i$	Landau	I, opt
CPR	0.707	0.193	0.137	$1.48 \pm 3.04i$	harmonic	I, opt
	0.556	0.092	0.051	$2.43 \pm 1.27i$	harmonic	II, opt
	0.332	0.274	0.091	$1.75 \pm 2.07i$	harmonic	III, opt

BMS: Benedetti, Machado, Saueressig, 2009.

RS: Reuter, Saueressig, 2002.

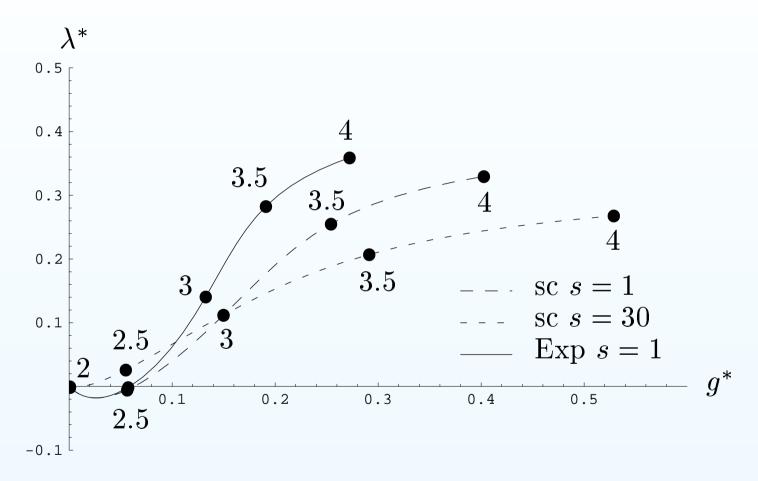
LR: Lauscher, Reuter, 2002.

L: Litim, 2004.

CPR: Codello, Percacci, Rahmede, 2009.

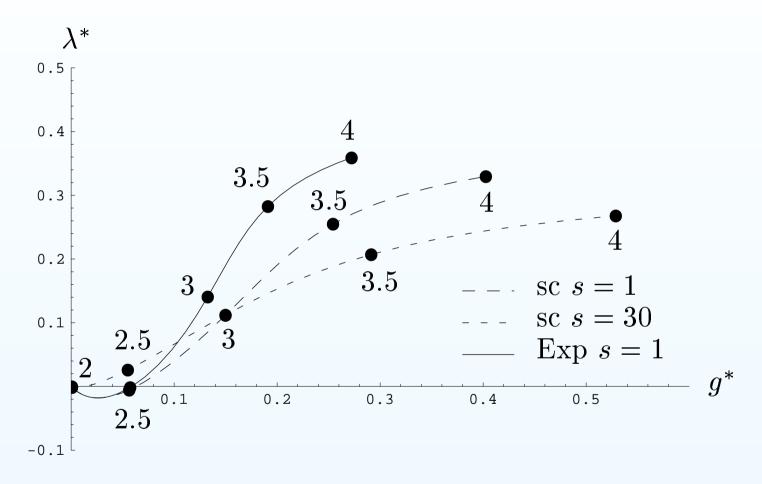
Einstein-Hilbert truncation: NGFP in $d=2+\epsilon$

 β -functions continuous in $d \Longleftrightarrow$ reproduce perturbative fix point in $d=2+\epsilon$



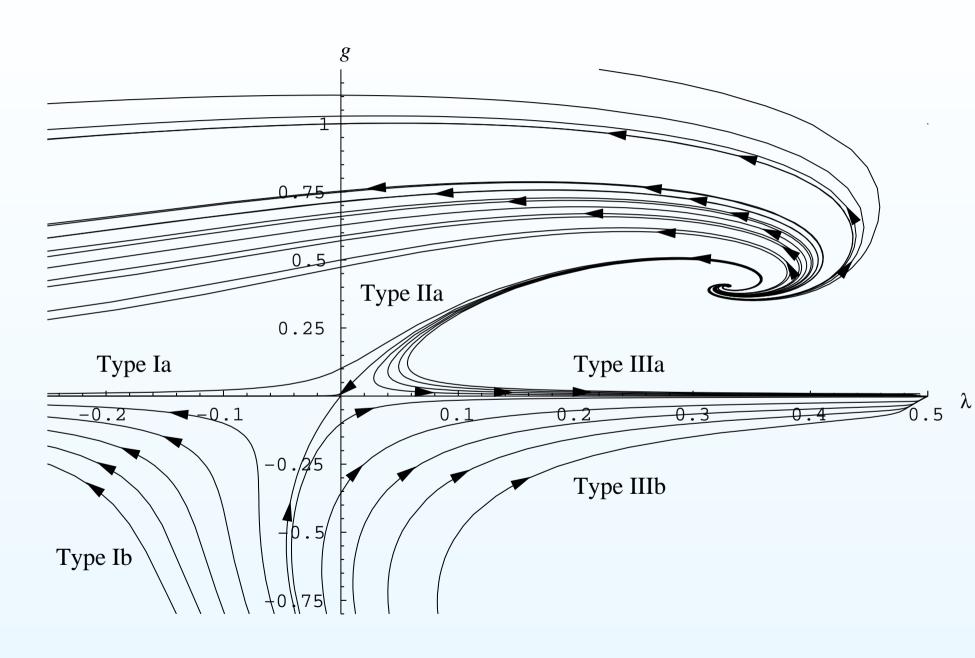
Einstein-Hilbert truncation: NGFP in $d=2+\epsilon$

 β -functions continuous in $d \Longleftrightarrow$ reproduce perturbative fix point in $d = 2 + \epsilon$



NGFP in $d=4 \Longleftrightarrow$ analytic continuation of NGFP in $d=2+\epsilon$

Einstein-Hilbert-truncation: the phase diagram



where FRG and CDT meet spectral dimension of space-time

Spectral dimension for classical manifolds

Heat-equation: diffusion of scalar test particle on manifold with metric g

$$\partial_T K_g(x, x'; T) = \Delta_g K_g(x, x'; T)$$

define average return probability

$$P_g(T) \equiv \frac{1}{V} \int d^{\mathbf{d}}x \sqrt{g(x)} K_g(x, x; T)$$
$$= \frac{1}{V} \text{Tr} \left[\exp(T\Delta_g) \right]$$
$$= \left(\frac{1}{4\pi T} \right)^{\mathbf{d}/2} \sum_{n=0}^{\infty} A_n T^n$$

asymptotic expansion: space-time dimension seen by diffusion process

$$d = -2 \frac{d \ln P_g(T)}{d \ln T} \bigg|_{T=0}$$

Spectral dimension for classical manifolds

Heat-equation: diffusion of scalar test particle on manifold with metric g

$$\partial_T K_g(x, x'; T) = \Delta_g K_g(x, x'; T)$$

define average return probability

$$P_g(T) \equiv \frac{1}{V} \int d^{\mathbf{d}}x \sqrt{g(x)} K_g(x, x; T)$$
$$= \frac{1}{V} \text{Tr} \left[\exp(T\Delta_g) \right]$$
$$= \left(\frac{1}{4\pi T} \right)^{\mathbf{d}/2} \sum_{n=0}^{\infty} A_n T^n$$

asymptotic expansion: space-time dimension seen by diffusion process

$$d = -2 \frac{d \ln P_g(T)}{d \ln T} \bigg|_{T=0}$$

P(T): accessible in CDT and FRG!

Spectral dimension of QEG space-times

- in QEG: metric of manifold is *k*-dependent
 - \Longrightarrow diffusion process "with momentum k" sees metric $\langle g_{\mu\nu} \rangle_k$
 - \implies diffusion equation and return probability will become k-dependent
- Computation of the spectral dimension:
 - 1. determine k-dependence of $\Delta(k)$
 - 2. solve the k-dependent heat equation
 - 3. evaluate "quantum return probability" P(T)
 - 4. obtain spectral dimension

$$\mathcal{D}_s = -2 \frac{d \ln P(T)}{d \ln T} \bigg|_{T=0}$$

Spectral dimension \mathcal{D}_s of QEG space-times

spectral dimension

$$\mathcal{D}_s = \left. -2\frac{d\ln P(T)}{d\ln T} \right|_{T=0}$$

Quantum return probability:

$$P(T) = \int \frac{d^d p}{(2\pi)^d} \exp[-p^2 F(p^2) T], \quad F(p^2) = \Lambda(p)/\Lambda(k_0)$$

• classical regime: no running, $F(p^2) = 1$:

$$P(T)|_{T=0} \propto T^{-d/2} \Longrightarrow \mathcal{D}_s = d$$

• fixed point regime: $\Lambda(p) \propto p^2 \to F(p^2) \propto p^2$:

$$P(T)|_{T=0} \propto T^{-d/4} \Longrightarrow \mathcal{D}_s = d/2$$

Spectral dimension \mathcal{D}_s of QEG space-times

spectral dimension

$$\mathcal{D}_s = -2 \frac{d \ln P(T)}{d \ln T} \bigg|_{T=0}$$

Quantum return probability:

$$P(T) = \int \frac{d^d p}{(2\pi)^d} \exp[-p^2 F(p^2) T], \quad F(p^2) = \Lambda(p)/\Lambda(k_0)$$

• classical regime: no running, $F(p^2) = 1$:

$$P(T)|_{T=0} \propto T^{-d/2} \Longrightarrow \mathcal{D}_s = d$$

• fixed point regime: $\Lambda(p) \propto p^2 \to F(p^2) \propto p^2$:

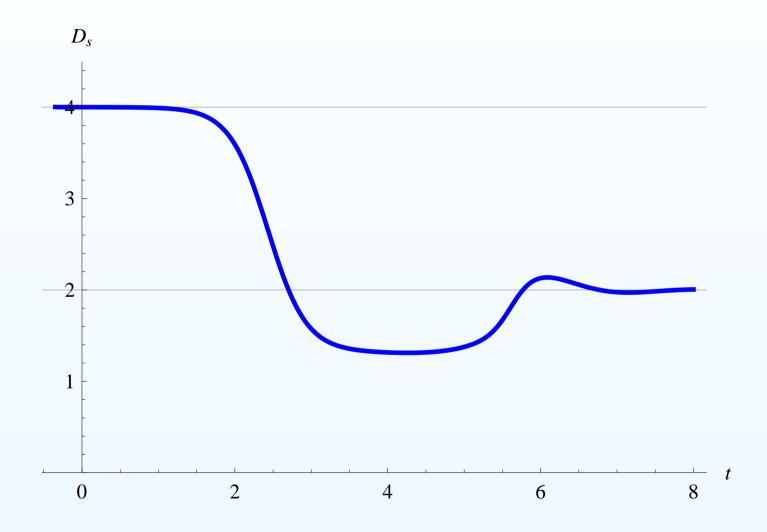
$$P(T)|_{T=0} \propto T^{-d/4} \Longrightarrow \mathcal{D}_s = d/2$$

d=4: QEG predicts continuous change of fractal dimension

 $\mathcal{D}_s = 4$ macroscopically $\Longrightarrow \mathcal{D}_s = 2$ microscopically

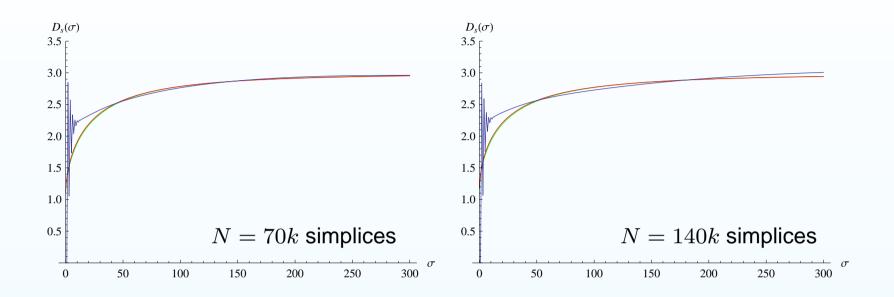
Spectral dimension \mathcal{D}_s of QEG space-times

Flow of spectral dimension along a typical RG-trajectory



Matching FRG and 3d-lattice-simulations

[3d-CDT-Data: D. Benedetti and J. Henson, Phys. Rev. D80 (2009) 124036]



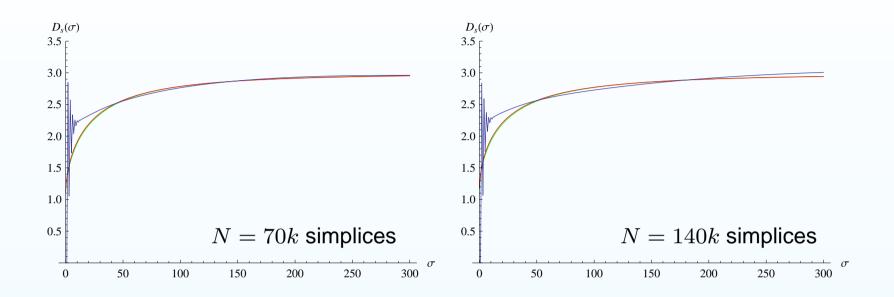
Semiclassical regime: parameterize leading quantum corrections:

$$\Lambda(p) = \Lambda_0 \left(1 + a \, p^{\delta} \right)$$

FRG-prediction: $\delta = 3$ \approx Lattice fit: $\delta \approx 3.3$

Matching FRG and 3d-lattice-simulations

[3d-CDT-Data: D. Benedetti and J. Henson, Phys. Rev. D80 (2009) 124036]



Semiclassical regime: parameterize leading quantum corrections:

$$\Lambda(p) = \Lambda_0 \left(1 + a \, p^{\delta} \right)$$

FRG-prediction: $\delta = 3$ \approx Lattice fit: $\delta \approx 3.3$

can compare and fit CDT Data and RG-results

Summary

gravitational asymptotic safety program

UV completion of gravity provided by non-trivial RG fixed point

Functional Renormalization Group quations:

- all computations support the existence of this fixed point
- UV-critical surface has finite dimension ←⇒ predictivity

Causal Dynamical Triangulations

spectral dimension allows to compare lattice and continuum results!

Summary

gravitational asymptotic safety program

UV completion of gravity provided by non-trivial RG fixed point

Functional Renormalization Group quations:

- all computations support the existence of this fixed point
- UV-critical surface has finite dimension ←⇒ predictivity

Causal Dynamical Triangulations

spectral dimension allows to compare lattice and continuum results!

Acknowledgments:

D. Benedetti, J. Henson providing CDT-data

K. Groh, S. Rechenberger and O. Zanusso for collaboration

Summary

gravitational asymptotic safety program

UV completion of gravity provided by non-trivial RG fixed point

Functional Renormalization Group quations:

- all computations support the existence of this fixed point
- UV-critical surface has finite dimension ←⇒ predictivity

Causal Dynamical Triangulations

spectral dimension allows to compare lattice and continuum results!

Acknowledgments:

- D. Benedetti, J. Henson providing CDT-data
- K. Groh, S. Rechenberger and O. Zanusso for collaboration

Thank you!