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describes: electromagnetic/strong/weak force + interactions with matter

extremely well tested

theoretical basis: quantum field theory

includes only relevant and marginal couplings

— renormalizable quantum field theory
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Introduction

General Relativity:

describes: gravity + interactions with matter

extremely well tested
theoretical basis: classical theory
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space-time curvature matter content

Ve

Newton constant GG has negative mass-dimension

— perturbatively non-renormalizable quantum field theory



General Relativity: perturbatively non-renormalizable

perturbative quantization of General Relativity:

® (G n has negative mass-dimension:
O infinite number of counterterms

© General Relativity is perturbatively non-renormalizable

Possible conclusions:

a) Treat General Relativity as effective field theory:
® compute corrections in E%/M3, < 1 (independent of UV-completion)

® breaks down at E* ~ M3
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Wilsonian renormalization and asymptotic safety

basic concepts
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Wilson’s modern picture of renormalization

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

classical
P UV S action

lop
1no Bunje.bajul

quantum
T effective action

implementation:

® action with scale-dependent couplings (G, A, .. .): gi(k)

® scale-dependence governed by g-functions: kOrg: = Bg; ({g:})



Ensuring good UV-behavior: fixed points of the RG-flow

amplitudes depend on dimensionless couplings only

® RG-flow for dimensionless running couplings: 9; (k)
Fixed points g}
® B-functions vanish: Bo:({g7}) =0
g; remain finite
® RG-trajectory captured by fixed point in UV:

— physical quantities remain free of unphysical divergences



Ensuring good UV-behavior: fixed points of the RG-flow

amplitudes depend on dimensionless couplings only

® RG-flow for dimensionless running couplings: gi (k)
Fixed points g}
® B-functions vanish: B, ({g7}) s

g; remain finite

® RG-trajectory captured by fixed point in UV:

— physical quantities remain free of unphysical divergences

Concepts associated with UV-fixed points:

® trajectories emanating from fixed point in UV
= span UV critical surface

® predictivity:

UV critical

= UV critical surface has finite dimension surface



Renormalization: asymptotic freedom and asymptotic safet y

Wilsonian formulation:

® UV fixed points allow two classes of renormalizable Quantum Field Theories

® (Gaussian Fixed Point (GFP):
© perturbatively renormalizable field theories
©  UV-limit: free theory

© asymptotic freedom (example: QCD)
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Renormalization: asymptotic freedom and asymptotic safet y

Wilsonian formulation:

® UV fixed points allow two classes of renormalizable Quantum Field Theories

® (Gaussian Fixed Point (GFP):
© perturbatively renormalizable field theories
©  UV-limit: free theory

© asymptotic freedom (example: QCD)

® non-Gaussian Fixed Point (NGFP):
© non-perturbatively renormalizable field theories
©  UV-limit: interacting theory

© asymptotic safety

Wilsonian picture: generalization of perturbative renormalization

asymptotic safety as predictive as asymptotic freedom




Examples: Asymptotically Safe Theories
Theories with non-Gaussian UV fixed point

® O(N)-sigma model (d = 2 + ¢)

[Brézin, Zinn-Justin '76]

© critical exponents of Heisenberg ferromagnets

® Gross-Neveu model (d =2 + ¢)
[Gawedzki, Kupiainen '85]

® Grosse-Wulkenhaar model (non-commutative ¢*-theory)

[Grosse, Wulkenhaar '05; Disertori, Gurau, Magnen, Rivasseau '07]

® Gravity in 2 + ¢ dimensions

[Christensen, Duff; Gastmans, Kallosh, Truffin '78]
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Renormalizing gravity

Wilsonian formulation:

® UV fixed points allow two classes of renormalizable Quantum Field Theories

® (Gaussian Fixed Point (GFP):
© perturbatively renormalizable field theories
©  UV-limit: free theory

© asymptotic freedom

® non-Gaussian Fixed Point (NGFP):
© non-perturbatively renormalizable field theories
O UV-limit: interacting theory GraVIty

© asymptotic safety

Weinberg's asymptotic safety conjecture (1979):

gravity in d = 4 has non-Gaussian UV fixed point




Testing asymptotic safety:

Functional Renormalization Group Equations (FRG)

Causal Dynamical Triangulations (CDT)



Functional Renormalization Group Equation for gravity

[C. Wetterich, Phys. Lett. B301 (1993) 90]

[M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030]

scale-dependence of I';, governed by exact RG equation

_ 52T —1
k0 Tk [0, @] = %Tr [(5@2 +Rk> kakm]

® Ri(p?) = IR momentum-cutoff at scale k
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[M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030]

scale-dependence of I';, governed by exact RG equation

_ 52T !
kOkT'k [0, 9] = %Tl“ [(591552 +Rk> kakRk]

limits of the RG-flow:

® Lk = A:initial (boundary) condition Ippr =T
® [k = 0: all quantum fluctuations integrated out ['peo =T
o (2)
[=Ta+ Jim [ dko;Ty R |
in between:

® regulator ensures finiteness of flow



Functional Renormalization Group Equation for gravity

[C. Wetterich, Phys. Lett. B301 (1993) 90]

[M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030]

scale-dependence of I';, governed by exact RG equation

_ 52T !
kOkT'k [0, 9] = %Tl“ [(591552 +Rk> ka]ﬂ%]

renormalizability:

® ifT"'A_ o = I'x exists, I'. qualifies as fundamental theory
O perturbatively renormalizable theory: '« is free theory (e.g. QCD)
© non-perturbatively renormalizable theory: T, is interacting

O non-renormalizable: T".. does not exist

® predictivity: provided by fixed point



Theory space underlying the Functional Renormalization Gr oup

I,=r

~ bare action : .
effective action



Non-perturbative approximation: derivative expansion of L'y
® caveat: FRGE cannot be solved exactly

<> gravity: need non-perturbative approximation scheme
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Non-perturbative approximation: derivative expansion of
® caveat: FRGE cannot be solved exactly

<> gravity: need non-perturbative approximation scheme

® expand I in derivatives and truncate series:

N

Tp[®] =) (k) O[@]

1=1
— Substitute into FRGE

—> projection of flow gives g-functions for running couplings

kOpui(k) = Bi(ui; k)

® testing the reliability:

© within a given truncation:
cutoff-scheme dependence of physical quantities (= vary R)

© stability of results within extended truncations

L'y



Letting things flow

The Einstein-Hilbert truncation



The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), A(k)

1

= 167G / d*z\/g[—R + 2A(k)] + S8t 4 &b

Iy

® project flow onto G-A—plane



The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), A(k)

1

Tp= ———
* T 167G (k)

/ d4x\/§ [—R + 2A(k)] + S8t 4 geb
® project flow onto G-A—plane

explicit s-functions for dimensionless couplings gi := k*G(k), A\ := A(k)k—?

® Particular choice of R, (optimized cutoff)

kOkgr = (N + 2)gk ,

kOpAk = — (2 —1nN) Ap — 35 [51—%>\k _4_%1—§>\an}

® anomalous dimension of Newton’s constant:

9gB1

W= T 5

_ 1 1 1 _ 1 1 1
B1 = 37 [5 =% 0 @=2n)? 7} , Ba = — 17 [5 T—ox 10 (1—2>\)2]



Einstein-Hilbert truncation: Fixed Point structure
p-functions for g;, := k2G(k), M\ := A(k)k—2

kOrgr =(nn + 2)gk ,

kO, = — (2—nn) A — 52 [51_%% _4_%1—§>\an]

microscopic theory < fixed points of the g-functions

59(9*7>\*):Oa Bk(g*aA*):O
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Einstein-Hilbert truncation: Fixed Point structure
p-functions for g;, := k2G(k), M\ := A(k)k—2

kOkgr = (NN + 2)gk ,

kO, = — (2—nn) A — 52 [51_%A,€ _4_%1—§A,€77N]

microscopic theory < fixed points of the g-functions

59(9*7>\*):Oa Bk(g*aA*):O

® (Gaussian Fixed Point:
© atg* =0,\* =0 <= free theory

© saddle point in the g-\-plane

® non-Gaussian Fixed Point (%, = —2):
o atg* > 0,\* >0 <= "“interacting” theory

© UV attractive in g, \i

Asymptotic safety: non-Gaussian Fixed Point is UV completion for gravity




Einstein-Hilbert truncation: Stability properties

Ref. g* A* g*A* 0" + 16" gauge R
BMS 0.902 0.109 0.099 2.52 4+ 1.781¢ geometric I, opt
RS 0.403 0.330 0.133 1.94 4+ 3.151¢ harmonic | I, sharp
LR 0.272 0.348 0.095 1.55 4+ 3.844 harmonic l, exp
0.344 0.339 0.117 1.86 + 4.08: Landau l, exp
L 1.17 0.25 0.295 1.67 + 4.314 Landau |, opt
CPR 0.707 0.193 0.137 1.48 £ 3.042 harmonic |, opt
0.556 0.092 0.051 2.43 + 1.271 harmonic I, opt
0.332 0.274 0.091 1.75 4+ 2.074 harmonic 1, opt
BMS: Benedetti, Machado, Saueressig, 2009.
RS: Reuter, Saueressig, 2002.
LR: Lauscher, Reuter, 2002.
L: Litim, 2004.

CPR:

Codello, Percacci, Rahmede, 2009.




Einstein-Hilbert truncation: NGFP In

d=2+¢€

B-functions continuous in d <= reproduce perturbative fix pointin d = 2 + ¢
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Einstein-Hilbert truncation: NGFPIn d=2+¢

B-functions continuous in d <= reproduce perturbative fix pointin d = 2 + ¢

)\*

0.5

NGFP in d = 4 <= analytic continuation of NGFP ind = 2 + ¢




Einstein-Hilbert-truncation: the phase diagram




where FRG and CDT meet

spectral dimension of space-time



Spectral dimension for classical manifolds

® Heat-equation: diffusion of scalar test particle on manifold with metric g
OrKg(z,2';T) = AgKg(x,2";T)

® define average return probability

P =5 [ %o /o) Kyfa i T)

— %Tr lexp(T'Ay)]

1 d/2 oo
= | — A, T
() 2

® asymptotic expansion: space-time dimension seen by diffusion process

2allnPg(T)
dinT

d= —

T=0



Spectral dimension for classical manifolds

® Heat-equation: diffusion of scalar test particle on manifold with metric g
OrKg(z,2';T) = AgKg(x,2";T)

® define average return probability

P =5 [ %o /o) Kyfa i T)

— %Tr lexp(T'Ay)]

1 d/2 oo
= | — A, T
() 2

® asymptotic expansion: space-time dimension seen by diffusion process

2allnPg(T)
dinT

d= —

T=0

P(T): accessible in CDT and FRG!




Spectral dimension of QEG space-times

® in QEG: metric of manifold is k-dependent
— diffusion process “with momentum k” sees metric (g.. )«

— diffusion equation and return probability will become k-dependent

® Computation of the spectral dimension:
1. determine k-dependence of A(k)
2. solve the k-dependent heat equation
3. evaluate “quantum return probability” P(T")

4. obtain spectral dimension



Spectral dimension D, of QEG space-times

® gspectral dimension
. dln P(T)

Ds = —
dinT |r_,

® Quantum return probability:

d
PT) = [ S2rexnlor FGAT). FGP) = AG)/Alko)

o classical regime: no running, F(p?) = 1:
P(T)|p_g x T~42 = D, =d
o fixed point regime: A(p) o p? — F(p?) o p?:

P(T)|p_g x T~4/* = Dy = d/2



Spectral dimension D, of QEG space-times

® gspectral dimension
. dln P(T)

Ds = —
dinT |r_,

® Quantum return probability:

d
PT) = [ S2rexnlor FGAT). FGP) = AG)/Alko)

o classical regime: no running, F(p?) = 1:
P(T)|p_g x T~42 = D, =d
o fixed point regime: A(p) o p? — F(p?) o p?:

P(T)|p_g x T~4/* = Dy = d/2

d = 4: QEG predicts continuous change of fractal dimension

Ds = 4 macroscopically — Ds = 2 microscopically




Spectral dimension D, of QEG space-times

Flow of spectral dimension along a typical RG-trajectory

Ds




Matching FRG and 3d-lattice-simulations
[3d-CDT-Data: D. Benedetti and J. Henson, Phys. Rev. D80 (2009) 124036]

Ds(0)

3.0f

2.5
2.0
15
1.0

05 N = 70k simplices

05 N = 140k simplices

Semiclassical regime: parameterize leading quantum corrections:

A(p) = Ao (1 + ap(s)

FRG-prediction: 6 = 3

~ Lattice fit; 6 ~ 3.3



Matching FRG and 3d-lattice-simulations
[3d-CDT-Data: D. Benedetti and J. Henson, Phys. Rev. D80 (2009) 124036]

Ds(0)

3.0f

2.5
2.0
15

1.0

05 N = 70k simplices

05 N = 140k simplices

Semiclassical regime: parameterize leading quantum corrections:

A(p) = Ao (1 + ap(s)

FRG-prediction: § = 3

~ Lattice fit: § ~ 3.3

can compare and fit CDT Data and RG-results




Summary

gravitational asymptotic safety program

UV completion of gravity provided by non-trivial RG fixed point

Functional Renormalization Group quations:
® all computations support the existence of this fixed point

® UV-critical surface has finite dimension < predictivity

Causal Dynamical Triangulations

® spectral dimension allows to compare lattice and continuum results!
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gravitational asymptotic safety program

UV completion of gravity provided by non-trivial RG fixed point

Functional Renormalization Group quations:
® all computations support the existence of this fixed point

® UV-critical surface has finite dimension < predictivity

Causal Dynamical Triangulations

® spectral dimension allows to compare lattice and continuum results!

Acknowledgments:
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Thank you!
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