New physics & flavor at high & low p_T

Andreas Weiler DESY/CERN

The SM flavor puzzle

 $Y_D \approx \operatorname{diag} \left(\begin{array}{ccc} 2 \cdot 10^{-5} & 0.0005 & 0.02 \end{array} \right)$ $Y_U \approx \left(\begin{array}{ccc} 6 \cdot 10^{-6} & -0.001 & 0.008 + 0.004i \\ 1 \cdot 10^{-6} & 0.004 & -0.04 + 0.001 \\ 8 \cdot 10^{-9} + 2 \cdot 10^{-8}i & 0.0002 & 0.98 \end{array} \right)$

Origin of this structure?

Other dimensionless parameters of the SM: $g_s \approx I$, $g \approx 0.6$, $g' \approx 0.3$, $\lambda_{Higgs} \approx I$, $|\theta| < 10^{-9}$

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	${ m Re}$	Im	${ m Re}$	Im	
$\overline{(ar{s}_L\gamma^\mu d_L)^2}$	$9.8 imes 10^2$	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\overline{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\overline{b}_R d_L) (\overline{b}_L d_R)$	1.9×10^3	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$\overline{(ar{b}_L \gamma^\mu s_L)^2}$	1.1×10^{2}		7.6×10^{-5}		Δm_{B_s}
$(\overline{b}_R s_L) (\overline{b}_L s_R)$	3.7	1×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	${ m Re}$	Im	Re	Im	
$(ar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$\overline{(ar{c}_L \gamma^\mu u_L)^2}$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6.2 imes 10^3$	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$\overline{(b_L \gamma^\mu d_L)^2}$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\overline{b}_R d_L)(\overline{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$\overline{(\overline{b}_L \gamma^\mu s_L)^2}$	1.1×10^{2}		7.6×10^{-5}		Δm_{B_s}
$(\overline{b}_R s_L) (\overline{b}_L s_R)$	3.7	7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}

Very strong suppression! New flavor violation must either approximately (exactly?) follow SM pattern...

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$\overline{(ar{s}_L\gamma^\mu d_L)^2}$	9.8×10^2	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$\overline{(ar{c}_L \gamma^\mu u_L)^2}$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\overline{b_L \gamma^\mu d_L})^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\overline{b}_R d_L)(\overline{b}_L d_R)$	1.9×10^3	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$\overline{(\overline{b}_L \gamma^\mu s_L)^2}$	1.1×10^2		7.6×10^{-5}		Δm_{B_s}
$(\overline{b}_R s_L) (\overline{b}_L s_R)$	3.7	1×10^2	1.3 :	$\times 10^{-5}$	Δm_{B_s}

Very strong suppression! New flavor violation must either approximately (exactly?) follow SM pattern...

... or exist only at very high scales ($10^2 - 10^5 \text{ TeV}$)

Flavorgenesis scale?

 $\frac{1}{\Lambda_{\rm Flavor}^2} (\bar{\psi}\psi)(\bar{\psi}\psi)$

 $y_{ij}\, \bar{\psi}_i \mathcal{H} \psi_j$

E

$$Y_D \approx \operatorname{diag} \left(\begin{array}{ccc} 2 \cdot 10^{-5} & 0.0005 & 0.02 \end{array} \right)$$
$$Y_U \approx \left(\begin{array}{ccc} 6 \cdot 10^{-6} & -0.001 & 0.008 + 0.004i \\ 1 \cdot 10^{-6} & 0.004 & -0.04 + 0.001 \\ 8 \cdot 10^{-9} + 2 \cdot 10^{-8}i & 0.0002 & 0.98 \end{array} \right)$$

Log(SM flavor puzzle)

$$-\log|Y_D| \approx \operatorname{diag}(11 \ 8 \ 4)$$
$$-\log|Y_U| \approx \begin{pmatrix} 12 \ 7 \ 5 \\ 14 \ 6 \ 3 \\ 18 \ 9 \ 0 \end{pmatrix}$$

If $Y = e^{-\Delta}$, then the Δ don't look crazy.

anarchic ("structure-less") $Mass_{ij} \propto Y_{ij}e^{-MR(c_i+c_j)}$ split fermions/RS $\propto Y_{ij} \left(rac{\mu_{
m low}}{\mu_{
m high}}
ight)^{\gamma^i + \gamma^j}$ strong dynamics $\propto Y_{ij} \left(\frac{\langle \Phi \rangle}{M_{\rm mess}}\right)^{Q^i - Q^j}$ Froggatt-Nielsen Hierarchy { => hierarchical masses & mixing angles

split fermions/RS

strong dynamics

 $\propto Y_{ij} \left(\frac{\langle \Phi \rangle}{M_{\rm mess}}\right)^{Q^i - Q^j}$ Froggatt-Nielsen

Hierarchy { => hierarchical masses & mixing angles

 $Mass_{ij} \propto Y_{ij}e^{-MR(c_i+c_j)}$

anarchic ("structure-less")

 $\propto Y_{ij} \left(rac{\mu_{
m low}}{\mu_{
m high}}
ight)^{\gamma^{i}+\gamma^{j}}$

split fermions/RS

strong dynamics

Froggatt-Nielsen

anarchic ("structure-less") $Mass_{ij} \propto Y_{ij}e^{-MR(c_i+c_j)}$ $\propto Y_{ij} \left(rac{\mu_{
m low}}{\mu_{
m high}}
ight)^{\gamma^{i}+\gamma^{j}}$ $\propto Y_{ij} \left(\frac{\langle \Phi \rangle}{M_{\rm mess}}\right)^{Q^i - Q^j}$ Hierarchy { => hierarchical masses & mixing angles

Example: MSSM is MFV before susy breaking. If flavor is generated well above messenger scale, TeV theory flavor trivial (= MFV).

 $S = \int \mathrm{d}^4 x \left(\mathrm{d}^2 \theta \mathrm{d}^2 \bar{\theta} \, \Phi_i^* \exp\left(2g_A T_A^a V_A^a\right) \Phi_i + \left\{ \mathrm{d}^2 \theta \left[\mathcal{W}(\{\Phi_i\}) + \frac{1}{4} W_A^a W_A^a \right] + \mathrm{h.c.} \right\} \right)$

1st-2nd gen' squarks and gluinos? Remark on Supersymmetry

Sauark-aluino-neutralino model (m = 0 GeVJets+E_T^{miss} Search Interpretation gen. squark Best expected signal region per model p hosen must be heavy Phenomenological MSSM squark-gluino grids: MSUGRA CMSSM $A_{r}=0$, tan $\beta=10$, $\mu>0$ masses from 100 GeV to 2 TeV, neutralino mass of 0 Limits unchanged if LSP mass raised to 200 GeV \checkmark atural-Susy: eV from Exclude at 95% C.L 35-200pb⁻¹) Exclude at 95% C.L lf , masses < 980 GeV lf , masses < 1075 GeV innels (jets Model independent figurial cross section limit, 95% C.L. Scalar mass parameters: m₀ ≥2-jets ≥3-jets ≥4-jets ≥4-jets **High mass** Gaugino mass parameter: m¹/₂ M_{eff}>500 GeV M_{eff}>10000 GeV Trilinear Higgs-sfermion-sfermion coupling: An Ratio of Higgs vacuum expectation values: tanß 24 fb 30 fb 477 fb 32 fb 17 fb Sign of SUSY Higgs parameter: sign(μ)

EPS-HEP 2011, Grenoble

Anyes Taffard - Overview SUSY Searches With ATLAS

9

1st-2nd gen' squarks and gluinos? Remark on Supersymmetry

A particular class of models: partial compositeness (geometric alignment vs. MFV)

Weak scale is unstable

elementary scalar Higgs

Inspiration by QCD

 ρ, \ldots

mass protected by global symmetry

 $\pi \to \pi + \alpha$

Inspired by QCD

 ho,\ldots

Potential tilted: due to quark masses and gauging of EM $GB \rightarrow pGB$

Fermions get masses by coupling to this new sector

MFV or not MFV?

Old Flavor problem of composite Higgs Higgs as bound state, naively $D_{\mathcal{H}=\langle \bar{\psi}\psi \rangle} \approx 3$ $\frac{1}{\Lambda^{D_{\mathcal{H}}-1}} y_{ij} \, \bar{\psi}_i \mathcal{H}\psi_j + \frac{1}{\Lambda^2} c_{ijkl} \, \bar{\psi}_i \psi_j \bar{\psi}_k \psi_l$

A can not be too large, because want top mass

 $\Lambda = \mathcal{O}(\text{TeV})$

Old Flavor problem of composite Higgs Higgs as bound state, naively $D_{\mathcal{H}=\langle \bar{\psi}\psi \rangle} \approx 3$ $\frac{1}{\Lambda^{D_{\mathcal{H}}-1}} y_{ij} \bar{\psi}_i \mathcal{H}\psi_j + \frac{1}{\Lambda^2} c_{ijkl} \bar{\psi}_i \psi_j \bar{\psi}_k \psi_l$

A can not be too large, because want top mass

A must be very large because this leads to FCNCs

K

 $\Lambda = \mathcal{O}(\text{TeV}) \quad \Lambda > 10^5 \text{ TeV}$

Two ways of giving mass to fermions...

Bi-linear (like SM):

 $\mathcal{L} = y f_L \mathcal{O}_H f_R, \quad \mathcal{O}_H \sim (1,2)_{\frac{1}{2}}$

Linear:

D.B. Kaplan '91 $\mathcal{L} = yf_L\mathcal{O}_R + y_Rf_R\mathcal{O}_L + m\mathcal{O}_L\mathcal{O}_R, \quad \stackrel{q_i}{\mathcal{O}_R} \sim (3,2)_{\frac{1}{6}H}$

Two ways of giving mass to fermions...

Bi-linear (like SM):

 $\mathcal{L} = y f_L \mathcal{O}_H f_R, \quad \mathcal{O}_H \sim (1,2)_{\frac{1}{2}}$

Linear:

D.B. Kaplan '91

 q_i

 $\mathcal{L} = y f_L \mathcal{O}_R + y_R f_R \mathcal{O}_L + m \mathcal{O}_L \mathcal{O}_R, \quad \overset{q_i}{\mathcal{O}_R} \sim (3, 2)_{\frac{1}{6}}$

Quarks & Leptons mix with strong sector

mass \propto compositeness

Partial compositeness $|SM\rangle = \cos\phi|elem.\rangle + \sin\phi|comp.\rangle$ $|heavy\rangle = -\sin\phi|elem.\rangle + \cos\phi|comp.\rangle$ Composites are heavy ($m_{\rho} \approx \text{TeV}$). Light quarks have very little composite admixture.

mixing
$$\sim$$
 mass
strong sector
Higgs&EVVSB
top
resonances
 ρ_{μ}
elementary fields
 u, d, c, s, b, A_{μ}

 $g_*, m_{
ho}$

 $1 \lesssim g_* \lesssim 4\pi$

Kaplan; Contino, Kramer, Son, Sundrum

RGE of the mixing UV III IR

IR

RGE of the mixing UV

IR

RGE of the mixing UV

IR

RGE of the mixing UV

high p_T

Resonance production (option 1)

 $\sim g_*^2 \sin^2 \theta_{u_R}$

strongly suppressed for light quarks!

high pt Resonance production (option 2) U ρ gluon $\sim rac{g_s}{g*}$ U similar to $\gamma - \rho$ mixing

NB, gluon-rho-rho = 0

high p_T

t,b

t,b

Resonance decay

ρ

decays dominantly into 3rd generation! (tt, bt, bb)

Agashe et al, Lillie et al

Mulder's talk

M > 1.5 TeV @ 95CL

Remark on top properties (beyond mass, charge & spin)

If 3rd generation composite or if e.g. stops light => top precision properties change <=

Leading effect at $1/\Lambda^2$: top Dipole moments

anomalous top couplings to

 $\begin{pmatrix} c_{LR,c} \ g_s \bar{Q} H \sigma^{\mu\nu} T^a U + \text{h.c.} \end{pmatrix} G^a_{\mu\nu} ,$ $\begin{pmatrix} c_{LR,w} \ g \bar{Q} \tau^a H \sigma^{\mu\nu} U + \text{h.c.} \end{pmatrix} W^a_{\mu\nu} ,$ $\begin{pmatrix} c_{LR,y} \ g' \bar{Q} H \sigma^{\mu\nu} U + \text{h.c.} \end{pmatrix} B_{\mu\nu} ,$

gluon W, Z, photon

Direct constraint: $t\bar{t}$ - spectrum

dashed:Tevatron

LHC7 200 1/pb (ATLAS-CONF-2011-087)

The neutron also knows about the top

The neutron also knows about the top

$$\begin{split} &\operatorname{Re} \Lambda_{LR,c}^{\operatorname{direct}} > 1.1 \ \operatorname{TeV} \\ &\operatorname{Im} \Lambda_{LR,c}^{\operatorname{direct}} > 0.62 \ \operatorname{TeV} \\ &\operatorname{Im} \Lambda_{LR,c}^{\operatorname{neutron}} > 5.5 \ \operatorname{TeV} \end{split}$$

neutron EDM: x100 stronger constraint than LHC (for CPV)

The neutron also knows about the top

$$\begin{split} & \mathrm{Re}\,\Lambda_{LR,c}^{\mathrm{direct}} > 1.1~\mathrm{TeV} \\ & \mathrm{Im}\,\Lambda_{LR,c}^{\mathrm{direct}} > 0.62~\mathrm{TeV} \\ & \mathrm{Im}\,\Lambda_{LR,c}^{\mathrm{neutron}} > 5.5~\mathrm{TeV} \end{split}$$

neutron EDM: x100 stronger constraint than LHC (for CPV)

Back to composite models

tension with CP observables

Little CP problem

Csaki, Falkowski, AW; Buras et al; Casagrande et al $\Delta F = 2 \; (\text{strongest from } \epsilon_K) \; g_* \approx Y_* \approx 3 \dots 6$

$$M_* \gtrsim 10 \left(\frac{g_*}{Y_*}\right) \text{TeV}$$

 $\Delta F = 1$ (strongest constraint from ϵ'/ϵ)

Gedalia et. al

 $\Delta F=0$ neutron EDM

$$M_* \gtrsim 1.3 \, Y_* \, {\rm TeV}$$

$$M_* \ge 2.5 Y_* \,\mathrm{TeV}$$

Agashe et. al, Delaunay et. al, Redi, AW

generate $Y_{U,D}$ at high scale

 Λ Flavor

2

-- A_{NP} -- <H>

strong sector has flavor invariant dynamics

Flavor triviality: dynamical MFV

Cacciapaglia, Csaki, Galloway, Marandella, Terning, A.W.

flavor trivial

mixing ~ SMYukawas

Strong sector $SU(3)_F$

Flavor breaking external

Postulate flavor agnostic strong sector (like QCD)

Tension between large top mass & universal mixings and EWPT

Found a simple, easily discoverable model that avoids these problems

Michele Redi, AW

Flavor breaking external

Postulate flavor agnostic strong sector (like QCD)

Tension between large top mass & universal mixings and EWPT

Found a simple, easily discoverable model that avoids these problems

Michele Redi, AW

Strong sector $SU(3)_F$

Production cross-section

Due to top mass all RH-quarks have big composite admixture:

Sup

Sup

Redi, AW

 $10 - 50 \times$ larger cross-section

LHC dijets (compositeness & bump search)

bump hunt

using *163 1/pb*: ATLAS-CONF-2011-081

LHC dijets (compositeness & bump search)

compositeness

bump hunt

using *163 1/pb*: ATLAS-CONF-2011-081

Conclusions & Outlook

High pT offers window into flavor

Flavor&CP know about TeV physics (3rd gen special: measure $S_{\psi\phi}$ at LHCb!)

Natural susy should have non-MFV squarks (find the light stop! see previous point)

Composite/Strongly coupled models are very visible if flavor invariant (discover it at LHC14!)