Tagging EW Boson-Jets and Top-Jets

Brock Tweedie Boston University 23 July 2011 @ EPS 2011 Grenoble

Welcome to the lev Scale

ATLAS-CONF-2011-087 (5 June 2011, 200 pb⁻¹)

2500

3000

tī mass

m_{tt} = 1602 GeV

MET

MET

Bottom Line

- At high E, everything becomes a jet
 - analogous to conceptual transition we've made with tau, charm, bottom
 - e.g., $Z \rightarrow \tau \tau / cc / bb => Z' \rightarrow tt / Zh / WW$
- This is a blessing
 - combinatorics become much easier
 - more complete radiation containment
 - dangerous backgrounds can become tamer due to PDFs and/or kinematics (cf., boosted Higgs search)
- And it is also a curse
 - normal jet reco merges decay products, losing kinematic info
 - large energy flow in core of jet => uncorrelated soft radiation at periphery affects mass reco ($\Delta m^2 \sim p_T^* \rho_{UE+PU}^* R^4$)
 - small angles -> new regime for detector fuzziness issues
 - how to model QCD backgrounds without tripping over logs?

Angular Scales

• *W/Z/h* -> *qq*

- $\Delta R > 2m / p_T$
- W/Z: $\Delta R \sim 0.4$ at $p_T \sim 400$ GeV
- h(120): $\Delta R \sim 0.4$ at $p_T \sim 600$ GeV
- Typical LHC jet size - $\Delta R \sim 0.4 - 0.7$
- HCAL cells

 ΔR ~ 0.1
- ECAL cells
 - $-\Delta R \sim 0.02$
- Tracker
 - $\Delta R \sim 0.001$

h->qq ΔR distribution in *Z*'(2 TeV) -> *Zh*

Angular Scales in Top Decay

 $p_T = 1$ TeV, min/max ΔR_{ij} probability distribution

ATL-PHYS-PUB-2010-008 R = 0.8 anti-kT

Jet Substructure for Tagging EW Bosons & Tops

- Figure out the relevant ∆R scales adaptively, instead of one-size-fits-all jet clustering
 - R = 0.4~0.7 jets -> variable-size subjets and/or jet-shapes
 - big-R *fat-jet* catches all decay products, substructure tells us where they're going (works for p_T ~ m and upwards)
- Discriminate against QCD parton splittings
 - multibody kinematics at arbitrarily small angles
 - potential to access more subtle aspects of radiation pattern
- Keep the radiation we want, toss the junk
 - jet grooming

Brief History Sketch

Classic Methods

- Seymour (1991~1994): k_T-algorithm subjet-finding and HCAL cell-threshold jet-grooming for heavy *h* -> *WW* -> (*h*_V)(*qq*)
- Butterworth, Cox, Forshaw (2002); Butterworth, Ellis, Raklev (2007):
 k_T splitting scales inside *W*-jets in strong *WW* scattering or SUSY cascades
- Popular "Modern" Methods
 - Butterworth, Davison, Rubin, Salam (2008): Recursive, angle-based declustering into subjets with grooming ("filtering") for high- p_T (*W*/*Z*)*h*
 - Brooijmans; Kaplan, et al; Thaler & Wang (2008): Top-taggers for ttbar resonances (cluster-decluster, cluster-recluster)
 - Almeida et al (2008): Jet-shapes for tops and EW bosons
 - Ellis, Vermilion, Walsh (2009): "Pruning" reclustering method -- jet groomer and bottom-up substructure organizer
 - Krohn, Thaler, Wang (2009): "Trimming" dedicated jet groomer
 - and now many, many more new approaches, refinements, and applications...

Butterworth, Davison, Rubin, Salam (BDRS)

W/Z -> leptons/neutrinos

 $p_T(V) \sim p_T(h) \sim 200 \text{ GeV} (\Delta R \sim 1.0)$

high- p_T kills backgrounds (esp. Zbb, ttbar) faster than signal

also: Agrawal, Bowser-Chao, Cheung, Dicus, DPF Conf. 1994: 488-492

Butterworth, Davison, Rubin, Salam (BDRS)

just UE (no pileup)

Butterworth, Davison, Rubin, Salam (BDRS)

 $Wh \rightarrow (h)(bb)$

 $Wh \rightarrow (h_V)(bb)$ combination

ATLAS TDR $30/\text{fb}, m_{H} = 100 \text{ GeV}$

original claim: 4.5σ sensitivity at 30/fb LHC14

more detailed studies: 3σ and change, but still a hot topic for investigation

Proof of Principle in Data: Fat QCD Jets

Impact of pile-up on mass w/ & w/o filtering

ATLAS-CONF-2011-073

Proof of Principle in Data: First Hint of Fat W-Jets

leptonic W + fat-jet events with pT > 180 BDRS procedure without b-tags

From David Miller's talk on Thursday (officially ATLAS-CONF-2011-103)

BDRS on Steroids: Z' -> Electroweak Bosons

VBF: Butterworth, Cox, Forshaw, hep-ph/0201098 Direct qqbar: Katz, Son, Tweedie, arXiv:1010.5253 Related study (heavy *h->ZZ*): Hackstein & Spannowsky, arXiv:1008.2202

Data-Driven W Mistag (CMS)

Ptimizationde) theory estimate using BDRS method with a +/-20% mass window suggests:

- W/Z/h tag rates 60-80%, fairly independent of p_T (but need to fold in ECAL)
- quark mistag 5-6%, gluon mistag 8-10%, decreasing with pT due to FSR effects (primitive color discrimination)
- CMS Version uses pruning with BDRS-inspired parameters:

 Note that different quark and gluon mistag rates suggest care should be taken in interpreting "tag-and-probe"

CMS PAS JME-10-013

Z'->WW Discovery Reach (LHC 14)

(Simple counting on simple simulation at LO)

Arrows indicate custodial RS model OR sequential Z' model

Line indicates S/B=1

Earlier result (arXiv:0709.0007): Need 1000/fb to reach 3 TeV

Some Ideas for Improvements

- Standard techniques still mainly rely on recovering quasi-2-body kinematics, but radiation pattern for quark/gluon vs boosted EW boson are very different
- Tricky to see by eye or to achive good S/B separation using simple energy flow variables, but multivariate analysis sees something nontrivial (holds up in detector??)
 - e.g., if willing to sacrifice ~half of signal, can ~double statistical significance (i.e., B down by ~16)
- For BDRS boosted Higgs search, also finds basic kinematic cuts that are more powerful than the default hard p_T cut

Cui, Han, Schwartz, arXiv:1012.2077

Top Tagging

- Tear the jet down one more layer (or rebuild it from bottom-up, e.g. via pruning)
 - 3 or 4 subjets
- Full 3-body decay kinematics
 - subjet pairwise invariant masses (look for the W, veto small-mass pairs)
 - reconstruct top and W decay angles
- Groom as needed
- b-tags???
 - shown to be tricky at high-p_T in a crowded jet, still under investigation
 - muon-based tag is still perhaps an (inefficient) option

Some Top-Tag Tactics

- ATLAS: Evolved from Brooijmans (2008)
 - cluster jets with k_T algorithm, decluster 2 or 3 stages and study mass/splitting scales
- Thaler & Wang

۲

- cluster jets with anti- k_T algorithm, exclusively recluster with k_T into 3 "subjets" and apply multibody kinematic cuts
- Hopkins/CMS: Evolved from Kaplan, Rehermann, Schwartz, Tweedie (2008)
 - cluster jets with Cambridge/Aachen algorithm, decluster recursively until 3 or 4 subjets are found and apply multibody kinematic cuts
- Jet Shapes: Almeida, Lee, Perez, Sterman, Sung, Virzi
 - angularities, planar flow, etc
- Pruning: Ellis, Vermilion, Walsh
 - selective jet clustering removes junk and self-organizes substructure simultaneously
- HEP Tagger: Plehn, Spannowsky, Takeuchi, Zerwas
 - decluster into arbitrary # subjets, sophisticated kinematic discrimination
 - works with for large top-jets with additional activity inside
- Template Overlap: Almeida, Lee, Perez, Sterman, Sung
 - calorimeter cell pattern -> multidimensional vector
 - check dot products with ensembles of template top-jets and QCD-jets
- N-Subjettiness: Thaler and Van Tilberg
 - continuous scores assigned for mono-subjet-like, di-subjet-like, tri-subjet-like, etc
- Dipolarity: Hook, Jankowiak, Wacker
 - improved discrimination using observables sensitive to color connections
- Correlation function lineshape: Jankowiak and Larkoski
 - look for sudden jumps in the multibody correlator wrt angle

* idealized 0.1 x 0.1 calorimeter

1 TeV Top-Jet Gallery

1 TeV Top-Jet Gallery

top jet

Tag/Mistag Rates

nization

Hopkins top-tagger on our simple theorists' simulation

CMS tag/mistag on full simulation

CMS tagger on data via tag & probe

CMS PAS JME-10-013

Performance Comparison

BOOST 2010, arXiv:1012.5412

The Semileptonic Option

- Lepton-inside-of-Jet is in principle much cleaner than Jetsinside-of-Jet!
- Studies by theorists and experimentalists indicate that backgrounds can still be powerfully rejected
 - QCD becomes far subdominant in tt spectrum, even with no b-tag
- Combined with hadronic top-tagging, ultimate LHC14 sensitivity to RS g' maybe up to ~5 TeV

ATL-PHYS-PUB-2010-008

Summary

- Lots of ideas, lots of progress for turning boosted EW bosons and tops into taggable objects for TeV-scale new physics searches, as well as the light Higgs search
- Basic elements of tags are now being validated on data
- Theory remains a bit floppy (lots of work in progress that I didn't talk about), but so far experimental philosophy has been in-situ calibration of taggers
 - detailed kinematic distributions for BDRS-type search look remarkably good
 - I'll re-emphasize that quark and gluon jets can behave very differently
- Looking forward to lots of interesting searches in the near-term and long-term future!!