Tagging EW Boson-Jets and Top-Jets

Brock Tweedie
Boston University
23 July 2011
@ EPS 2011 Grenoble
Welcome to the TeV Scale

Figure 4: Reconstructed $m_{t\bar{t}}$ mass on linear, a-, and logarithmic, b-, scales using the dR_{min} algorithm after all cuts. The electron and muon channels have been added together and all events beyond the range of the histogram have been added to the last bin. Only statistical uncertainties are shown.

Figure 5: Event display for a high-mass event, $m_{t\bar{t}} = 1602$ GeV. The main panel on the top left shows the $r-\phi$ view, the bottom panel the $r-z$ view, and the middle right panel the calorimeter $\eta-\phi$ view. The top quark boosts lead the decay products to be collimated, albeit still mostly distinguishable using standard reconstruction algorithms.
$\text{TeV} \gg m_t$
$\text{TeV} \gg m_W$
Bottom Line

- At high E, everything becomes a jet
 - analogous to conceptual transition we’ve made with tau, charm, bottom
 - e.g., $Z \rightarrow \tau\tau / cc / bb \Rightarrow Z' \rightarrow tt / Zh / WW$

- This is a blessing
 - combinatorics become much easier
 - more complete radiation containment
 - dangerous backgrounds can become tamer due to PDFs and/or kinematics (cf., boosted Higgs search)

- And it is also a curse
 - normal jet reco merges decay products, losing kinematic info
 - large energy flow in core of jet \Rightarrow uncorrelated soft radiation at periphery affects mass reco ($\Delta m^2 \sim p_T^* p_{UE+PU}^* R^4$)
 - small angles \Rightarrow new regime for detector fuzziness issues
 - how to model QCD backgrounds without tripping over logs?
Angular Scales

- $W/Z/h \rightarrow qq$
 - $\Delta R > 2m / p_T$
 - W/Z: $\Delta R \sim 0.4$ at $p_T \sim 400$ GeV
 - $h(120)$: $\Delta R \sim 0.4$ at $p_T \sim 600$ GeV

- Typical LHC jet size
 - $\Delta R \sim 0.4 - 0.7$

- HCAL cells
 - $\Delta R \sim 0.1$

- ECAL cells
 - $\Delta R \sim 0.02$

- Tracker
 - $\Delta R \sim 0.001$

$h\rightarrow qq$ ΔR distribution in $Z'(2$ TeV) $\rightarrow Zh$
Angular Scales in Top Decay

\[p_T = 1 \text{ TeV}, \ \text{min/max } \Delta R_{ij} \]

probability distribution

\[\text{ATL-PHYS-PUB-2010-008} \]

R = 0.8 anti-\text{kT}
Jet Substructure for Tagging
EW Bosons & Tops

- Figure out the relevant \(\Delta R \) scales adaptively, instead of one-size-fits-all jet clustering
 - \(R = 0.4\sim0.7 \) jets -> variable-size *subjets* and/or jet-shapes
 - big-R *fat-jet* catches all decay products, substructure tells us where they’re going (works for \(p_T \sim m \) and upwards)

- Discriminate against QCD parton splittings
 - multibody kinematics at arbitrarily small angles
 - potential to access more subtle aspects of radiation pattern

- Keep the radiation we want, toss the junk
 - *jet grooming*
Brief History Sketch

- **Classic Methods**
 - Seymour (1991~1994): k_T-algorithm subjet-finding and HCAL cell-threshold jet-grooming for heavy $h \to WW \to (\ell \nu)(qq)$
 - Butterworth, Cox, Forshaw (2002); Butterworth, Ellis, Raklev (2007): k_T splitting scales inside W-jets in strong WW scattering or SUSY cascades

- **Popular “Modern” Methods**
 - Butterworth, Davison, Rubin, Salam (2008): Recursive, angle-based declustering into subjets with grooming (“filtering”) for high-$p_T (W/Z)h$
 - Brooijmans; Kaplan, et al; Thaler & Wang (2008): Top-taggers for $tt\bar{t}$ resonances (cluster-decluster, cluster-recluster)
 - Ellis, Vermilion, Walsh (2009): “Pruning” reclustering method -- jet groomer and bottom-up substructure organizer
 - and now many, many more new approaches, refinements, and applications...
Butterworth, Davison, Rubin, Salam (BDRS)

$W/Z \rightarrow \text{leptons/neutrinos}$

$R = 1.2$ “fat jet” formed via Cambridge/Aachen sequential clustering

$p_T(V) \sim p_T(h) \sim 200 \text{ GeV} \ (\Delta R \sim 1.0)$

high-p_T kills backgrounds (esp. Z_{bb}, $t\bar{t}bar$)

faster than signal

also: Agrawal, Bowser-Chao, Cheung, Dicus, DPF Conf.1994:488-492
Butterworth, Davison, Rubin, Salam (BDRS)

R=1.2 C/A fat-jet subjets via declustering filtered subjets

just UE (no pileup)
Butterworth, Davison, Rubin, Salam (BDRS)

\[WH \rightarrow (l\nu)(bb) \]

\[Zh \rightarrow (l^+l^-)(bb) \quad Zh \rightarrow (\nu\nu)(bb) \]

ATLAS TDR

30/fb, \(m_H = 100 \) GeV

original claim: 4.5\(\sigma \) sensitivity at 30/fb LHC14

more detailed studies: 3\(\sigma \) and change, but still a hot topic for investigation
Proof of Principle in Data: Fat QCD Jets

ATLAS Preliminary

- ATLAS 2010 data: 35 pb$^{-1}$
- Pythia MC10
- Herwig/Jimmy
- Herwig++

ATLAS Preliminary

- ATLAS 2010 data: 35 pb$^{-1}$
- Pythia
- Herwig/Jimmy
- Herwig++

Anti-k_t, $R = 1.0$ mass (35 pb$^{-1}$)

C/A, $R = 1.2$ mass (35 pb$^{-1}$)

C/A, $R = 1.2$ (filtered) mass (35 pb$^{-1}$)

Impact of pile-up on mass w/ & w/o filtering

\[\sqrt{d_{12}} = \min(p_{T,1}, p_{T,2}) \delta R_{12} \]
Proof of Principle in Data: First Hint of Fat W-Jets

leptonic W + fat-jet events with pT > 180
BDRS procedure without b-tags

From David Miller’s talk on Thursday
(officially ATLAS-CONF-2011-103)
BDRS on Steroids: $Z' \rightarrow$ Electroweak Bosons

$q\bar{q}$ & W & W & Z' & $\bar{q}q$ & W & W

VBF: Butterworth, Cox, Forshaw, hep-ph/0201098
Direct qqbar: Katz, Son, Tweedie, arXiv:1010.5253
Related study (heavy $h\rightarrow ZZ$): Hackstein & Spannowsky, arXiv:1008.2202
Data-Driven W Mistag (CMS)

- Our own (crude) theory estimate using BDRS method with a +/- 20% mass window suggests:
 - W/Z/h tag rates 60-80%, fairly independent of p_T (but need to fold in ECAL)
 - quark mistag 5-6%, gluon mistag 8-10%, decreasing with p_T due to FSR effects (primitive color discrimination)

- CMS Version uses pruning with BDRS-inspired parameters:

 ![Graphs showing W mistag and tag efficiency](images)

- Note that different quark and gluon mistag rates suggest care should be taken in interpreting “tag-and-probe”
Z'\rightarrow WW Discovery Reach (LHC 14)

(Simple counting on simple simulation at LO)

Arrows indicate custodial RS model OR sequential Z' model

Line indicates S/B=1

Earlier result (arXiv:0709.0007): Need 1000/fb to reach 3 TeV
Some Ideas for Improvements

• Standard techniques still mainly rely on recovering quasi-2-body kinematics, but radiation pattern for quark/gluon vs boosted EW boson are very different

• Tricky to see by eye or to achieve good S/B separation using simple energy flow variables, but multivariate analysis sees something nontrivial (holds up in detector??)
 – e.g., if willing to sacrifice ~half of signal, can ~double statistical significance (i.e., B down by ~16)

• For BDRS boosted Higgs search, also finds basic kinematic cuts that are more powerful than the default hard p_T cut

Cui, Han, Schwartz, arXiv:1012.2077
Top Tagging

• Tear the jet down one more layer (or rebuild it from bottom-up, e.g. via pruning)
 – 3 or 4 subjets

• Full 3-body decay kinematics
 – subjet pairwise invariant masses (look for the W, veto small-mass pairs)
 – reconstruct top and W decay angles

• Groom as needed

• b-tags???
 – shown to be tricky at high-p_T in a crowded jet, still under investigation
 – muon-based tag is still perhaps an (inefficient) option
Some Top-Tag Tactics

- **ATLAS**: Evolved from Brooijmans (2008)
 - cluster jets with k_T algorithm, decluster 2 or 3 stages and study mass/splitting scales
- **Thaler & Wang**
 - cluster jets with anti-k_T algorithm, exclusively recluster with k_T into 3 “subjets” and apply multibody kinematic cuts
- **Hopkins/CMS**: Evolved from Kaplan, Rehermann, Schwartz, Tweedie (2008)
 - cluster jets with Cambridge/Aachen algorithm, decluster recursively until 3 or 4 subjets are found and apply multibody kinematic cuts
- **Jet Shapes**: Almeida, Lee, Perez, Sterman, Sung, Virzi
 - angularities, planar flow, etc
- **Pruning**: Ellis, Vermilion, Walsh
 - selective jet clustering removes junk and self-organizes substructure simultaneously
- **HEP Tagger**: Plehn, Spannowsky, Takeuchi, Zerwas
 - decluster into arbitrary # subjets, sophisticated kinematic discrimination
 - works with for large top-jets with additional activity inside
- **Template Overlap**: Almeida, Lee, Perez, Sterman, Sung
 - calorimeter cell pattern -> multidimensional vector
 - check dot products with ensembles of template top-jets and QCD-jets
- **N-Subjettiness**: Thaler and Van Tilberg
 - continuous scores assigned for mono-subjet-like, di-subjet-like, tri-subjet-like, etc
- **Dipolarity**: Hook, Jankowiak, Wacker
 - improved discrimination using observables sensitive to color connections
- **Correlation function lineshape**: Jankowiak and Larkoski
 - look for sudden jumps in the multibody correlator wrt angle
1 TeV Top-Jet Gallery

* idealized 0.1 x 0.1 calorimeter
1 TeV Top-Jet Gallery
Tag/Mistag Rates

Hopkins top-tagger on our simple theorists’ simulation

CMS tag/mistag on full simulation

CMS tagger on data via tag & probe

Monday, May 16, 2011

CMS PAS JME-10-013
Performance Comparison

BOOST 2010, arXiv:1012.5412

(back to perfect 0.1x0.1 calorimeter)

correlator lineshape

N-subjettiness
The Semileptonic Option

- Lepton-inside-of-Jet is in principle much cleaner than Jets-inside-of-Jet!
- Studies by theorists and experimentalists indicate that backgrounds can still be powerfully rejected
 - QCD becomes far subdominant in $t\bar{t}$ spectrum, even with no b-tag
- Combined with hadronic top-tagging, ultimate LHC14 sensitivity to RS g’ maybe up to ~ 5 TeV
Summary

• Lots of ideas, lots of progress for turning boosted EW bosons and tops into taggable objects for TeV-scale new physics searches, as well as the light Higgs search
• Basic elements of tags are now being validated *on data*
• Theory remains a bit floppy (lots of work in progress that I didn’t talk about), but so far experimental philosophy has been in-situ calibration of taggers
 – detailed kinematic distributions for BDRS-type search look remarkably good
 – I’ll re-emphasize that quark and gluon jets can behave very differently
• Looking forward to lots of interesting searches in the near-term and long-term future!!