

A Novel Pixel Vertex Detector for the Belle II Experiment at the SuperKEKB Collider

Christian Kiesling Max-Planck-Institut für Physik, München for the DEPFET Collaboration

Motivation: New Physics

- SuperKEKB and Belle II
- DEPFET Technology
- Pixel Vertex Detector ("PXD")
- Conclusion & Next Steps

The Standard Model $SU_3 \times SU_2 \times U_1$ (SM) describes all data so far yet: cannot be the correct theory, SM only a "low energy" approximation

Evidence for Physics beyond the Standard Model:

- Dark Matter exists
 (only 4% of the Universe accounted for by SM)
- Neutrinos have mass (Dirac, Majorana?)
- Baryon Asymmetry in the Universe is much too large (by 10 orders of magnitude)

need very high energy (LHC) or **v. high precision** (SuperB factories)

At least two of them have to do with CP Violation

€ P : One of the so-called Sakharov-conditions

Precise vertex detectors essential to measure CP violation

The Belle II Detector

SuperKEKB and Belle-II The Luminosity Frontier

Belle-II Collaboration founded in Dec. 2008 now over 400 members from 51 institutions and 14 countries strong European participation: Austria, Germany, Czech Republic, Poland, Spain, Slovenia, (mainly in Pixel Vertex Detector, Si Strip Detector)

SVD

SuperKEKB: Nano beam option, 1 cm radius of beam pipe

- 2 layer Si pixel detector (DEPFET technology) (R = 1.4, 2.2 cm)monolithic sensor thickness 75 μ m (!), pixel size ~50 x 50 μ m²
- 4 layer Si strip detector (DSSD) ← "SVD" (R = 3.8, 8.0, 11.5, 14.0 cm)

Significant improvement in z-vertex resolution thin sensor (75 µm)

C. Kiesling, EPS-Conference, Grenoble, July 21-28, 2011

DEPFET:

PXD

unique worldwide

DEPFET Principle

low power

C. Kiesling, EPS-Conference, Grenoble, July 21-28, 2011

low noise

Array of DEPFETs

Row wise read-out

("rolling shutter mode")

- select row with external gate read current,
 clear internal gate,
 read current again
 - \rightarrow the difference is the signal
- readout time of entire PXD
 in 20 µs (100 ns per row)
- three different auxiliary ASICs needed

Thinning Technology

sensor wafer				
_				
	handle wafer			
1. implant backside on sensor wafer	2. bond sensor wafer to handle wafer	3. thin sensor side to desired thickness	4. process DEPFETs on top	5. structure resist, etch backside up to oxide/implant

- Sensor wafer bonded on "handle" wafer.
- Rigid frame for handling and mechanical stiffness
- = 50 μ m thickness produced
- Full-sized Belle II matrices have been produced
- Electrical properties tested successfully

Sensor Test Production

First thinned (50 µm) DEPFETs ever !

Sensor Test Production (cont.)

First Tests of Thin DEPFET Sensors ("PXD6")

4.5 5

1018

0.8908

0.1385

PXD Project - Layout

Full-Size Mockup of the PXD

...with real thinned Si ladders

beam pipe support and cable stress relief

mechanical support and CO2 evaporator

- Vertexing at SuperKEKB essential to measure CP violation
- SuperKEKB will provide very high luminosity, but also high background levels: Si strips not possible close to the beam pipe,
- Low momenta of secondaries need low material budget Silicon
- DEPFET technology will provide monolithic thin (75 μ m = 0.18 % of X₀ including electronics) pixel detector ("PXD") with 100% fill factor
- Design of PXD for Belle II well advanced, ladder support and cooling of electronics outside of acceptance regions solved
- First thin DEPFETs successfully tested, performance as expected
- Some issues still with yield, prototype production is planned
- Schedule: PXD ready for installation by mid of 2015

Backup

An Event in the Silicon Tracking System (Belle)

Improvement of Radiation Hardness

Change in threshold voltage shift due to certain Gate voltages

