The Quest for Light Scalar Quarkonia from eLSM

Denis Parganlija *, F. Giacosa *, D. Rischke *, P. Kovacs ** and Gy. Wolf **

* Institute for Theoretical Physics, University of Frankfurt/Germany

** Research Institute for Particle and Nuclear Physics, Budapest/Hungary

Questions

Scalar mesons have been studied for decades but we still do not understand them completely:

- i) The PDG cites five $IJ^{PC}=00^{++}$ states in the energy region under 1 GeV: $f_d(600)$, $f_d(980)$, $f_d(1370)$, $f_d(1500)$ and $f_d(1710)$. Suppose you had a theory containing the following states: scalar quarkantiquark (2 states if we consider u, d, s quarks), scalar tetraquark (again, with three flavours $\rightarrow 2$ states) and a scalar glueball state. How do we assign them to the measured states? Thus: What is the structure of scalar mesons?
- ii) An order parameter for the chiral phase transition (restoration of the chiral symmetry) is the degeneration of the pion and its chiral partner, a scalar meson. This scalar meson has to be a quark-antiquark state (just as the pion). But there are five scalars – and thus five potential

We implement the **explicit breaking** of the Chiral Symmetry (via the H and Δ terms), the **chiral anomaly** (via the c term) and the **spontaneous breaking** of the Chiral Symmetry (shifting the scalars by the non-strange and strange condensates ϕ_N and ϕ_S , i.e., $\sigma_{N/S} \rightarrow \sigma_{N/S} + \phi_{N/S}$).

Note: $D_{\mu}\Phi = \partial_{\mu}\Phi - ig_1(L_{\mu}\Phi - \Phi R_{\mu}).$

The Global Fit of Masses

The model parameters are fixed using a global fit of all meson masses (except the sigmas). The results are shown in the following table.

	Mass	Our	PDG	Mass	Our	PDG
		value	Value		value	Value
		(MeV)	(MeV)		(MeV)	(MeV)
	$m{m}_{\pi}$	138.65	139.57	$m_{\varphi(1020)}$	1036.9	1019.5
	\boldsymbol{m}_{K}	497.96	493.68	$m_{f_1(1420)}$	1457	1426.4
	$oldsymbol{m}_\eta$	523.20	547.85	$m_{a_1(1260)}$	1219	1230
	$oldsymbol{m}_{\eta'}$	957.79	957.78	\boldsymbol{m}_{K_1}	1343	1272
	$m_{ ho}$	775.49	775.49	$m_{K_0^*(1430)}$	1452	1474
-	m_{K^*}	916.52	891.66	$m_{a_0(1450)}$	1550	1425

chiral partners of the pion. Thus: Which scalar is a non-strange quark-antiquark state?

Our Approach

A comprehensive study of scalars should include other mesons they can interact with: pseudoscalars, vectors and axial-vectors [1]. We present an Extended Linear Sigma Model with vector and axial-vector mesons (eLSM) not only in the non-strange but in the strange sector as well - the first time such a study has been performed with all the mentioned states.

The Fields

The following four matrices contain the scalar (S), pseudoscalar (P), vector (V) and axial-vector (A) mesons from our model.

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sigma_N + a_0^0}{\sqrt{2}} & a_0^+ & K_s^+ \\ \frac{\sigma_0}{\sqrt{2}} & \frac{\sigma_N - a_0^0}{\sqrt{2}} & K_s^0 \\ K_s^- & \frac{\sigma_N - a_0^0}{\sqrt{2}} & K_s^0 \\ K_s^- & \frac{\sigma_N - \pi^0}{\sqrt{2}} & K^0 \\ K^- & \frac{\sigma_N - \pi^0}{\sqrt{2}} & K^0 \\ K^- & \frac{\sigma_N - \pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \frac{\sigma_N - \pi^0}{\sqrt{2}} & \rho^+ & K^{*+} \\ \rho^- & \frac{\sigma_N - \rho_\mu^0}{\sqrt{2}} & K^{*0} \\ K^{*-} & \frac{\sigma_N - \sigma_N^0}{\sqrt{2}} & K^0 \\ K^{*-} & \frac{\sigma_N^0}{\sqrt{2}} & K^0 \\ K^{*-} & \frac{\sigma_N^0}{\sqrt{2}}$$

The correspondence to the PDG data is very good. All the states in our model are quarkonia [1] thus, all of the above resonances are favoured to be quark-antiquark states.

What about the σ states?

The pure non-strange state σ_N and the pure strange state σ_S mix producing the states σ_1 (95% nonstrange) and σ_2 (95% strange); decays below.

The Lagrangian

Let us define $\Phi := S + iP$, $L^{\mu} := W + A^{\mu}$ and $R^{\mu} := W - A^{\mu}$. Then the Lagrangian with the $U(3)_L \times U(3)_R$ Chiral Symmetry reads:

$$\mathcal{L} = \operatorname{Tr} \left[(D^{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \right] - m_0^2 \operatorname{Tr} (\Phi^{\dagger} \Phi) - \lambda_1 [\operatorname{Tr} (\Phi^{\dagger} \Phi)]^2 - \lambda_2 \operatorname{Tr} (\Phi^{\dagger} \Phi)^2 + \operatorname{Tr} \left[H(\Phi + \Phi^{\dagger}) \right] + c \left[(\det \Phi + \det \Phi^{\dagger})^2 - 4 \det (\Phi \Phi^{\dagger}) \right] - \frac{1}{4} \operatorname{Tr} \left(L_{\mu\nu}^2 + R_{\mu\nu}^2 \right) + \operatorname{Tr} \left[\left(\frac{m_1^2}{2} + \Delta \right) (L_{\mu\nu}^2 + R_{\mu\nu}^2) \right]$$

 $-2ig_{2}(\operatorname{Tr} \{L_{\mu\nu}[L^{\mu},L^{\nu}]\} + \operatorname{Tr} \{R_{\mu\nu}[R^{\mu},R^{\nu}]\})$

+ $\frac{h_1}{2}$ Tr ($\Phi^{\dagger}\Phi$) Tr ($L_{\mu}^2 + R_{\mu}^2$) + h_2 Tr[($L_{\mu}\Phi$)² + (ΦR_{μ})²]

+ $2\boldsymbol{h}_{3}$ Tr $(\boldsymbol{\Phi}\boldsymbol{R}_{\mu}\boldsymbol{\Phi}^{\dagger}\boldsymbol{L}^{\mu})$

Summary and Outlook

We thus see scalar quarkonia above 1 GeV: $f_0(1370)$ as a predominantly non-strange and $f_0(1710)$ as a predominantly strange quarkantiquark state. However: we still need to include a glueball and tetraquark states.

References

[1] D. Parganlija, F. Giacosa and D. H. Rischke, Phys. Rev. D 82, 054024 (2010) [arXiv: 1003.4934 [hep-ph].]

[2] D. Parganlija, arXiv: 1105.3647 [hep-ph].