A detector for the measurement of the ultrarare decay $K^+ \rightarrow \pi^+ \nu \nu$: NA62 at the CERN SPS

Paolo Valente (INFN Roma) on behalf of the NA62 Collaboration

Possible to distinguish among several **New Physics** models: SUSY, MSSM with or without new CP violation or Flavour violation sources, extra-dimensions, etc.

nn

NA62 experiment

• Collect ≈100 events in 2 years (10% precision)

K⁺

 π^+

- Keep background below 10%
- Need ≈10¹³ K⁺ decays

Need

- K momentum
- π momentum
- No other particle
- Minimize interactions
- Statistics
- Kinematical rejection is not enough...

Kinematical rejection

Main backgrounds:

• $K^+ \rightarrow \mu^+ \nu$ (63%), $K^+ \rightarrow \pi^+ \pi^0$ (21%) + beam halo and particle interactions

10⁴ rejection power for $\pi^+\pi^0$, $\mu^+\nu$, 3π

Sources of inefficiency:

- Multiple scattering, non gaussian tails
- Kπ mis-match

E.

Kinematical rejection

00

m² cut only

NA62 experiment

- Collect ≈100 events in 2 years (10% precision)
- Keep background below 10%
- Need ≈10¹³ K⁺ decays: use un-separated high-intensity hadron beam

p, π

A CONTRACTOR OF A CONTRACT OF A CONTRACTOR OF A		
NeedK momentum	UseK identification, beam spectrometer	Key factorsEfficiency, resolution
• π momentum	• π/μ separation, π spectrometer	Acceptance, purity
No other particle	Veto detectors	• High <i>p</i> , veto efficiency
Minimize interactions	Low mass detectors	Spectrometers in vacuur
Statistics	 High intensity beam 	Time resolution

 π

- Kinematical rejection $\approx 10^{-4}$, Vetoes $\approx 10^{-5}$, Particle Id. $\approx 10^{-3}$
- 6% Kaons, 800 MHz beam, p=75 GeV/c
- Time resolution ≈ 100 ps

In the heart of CERN:

- Re-use Kaon beam-line from SPS with **50× intensity**
- Re-use liquid Krypton calorimeter from NA48
- Also re-use spectrometer magnet, vacuum tube, hadron calorimeter from NA48

Gigatracker: the silicon pixel beam detector

See talk by **Sara Garbolino** (Friday, July 22nd, 11:45, **Detector RD & Data Handling**)

Charged veto

Veto:

- 2 MHz muon halo
- + inelastic interactions
- Extruded scintillator bars
- WLS fibers readout + SiPM's
- ≈ 10 ph.el. / MIP
- σ_t < 2 ns

Straw tracker spectrometer

- 2 + 2 tracking stations
- 4 views/station (u-v, x-y)
- 2.1 m diameter acceptance
- 12 cm beam hole
- Track angle: ±3°
- σ < 130 μ m per view
- 7168 traw tubes in vacuum:
 - 30 μm Au-plated wire
 - 100 μm straw straightness
 - Ar(70%)/CO₂(30%)

Straw tracker prototype

Straws prototype test:

- 64 straws
- Final mechanics
- Vacuum vessel
- CARIOCA readout electronics
- Pion beam, 120 GeV/c

Photon vetoes

50

Photon vetoes (LAV)

- 12 stations along the decay tube
- 2500 lead glass blocks, re-used from **OPAL** electromagnetic calorimeter
- 11/12 stations operate in vacuum
- Cover 8 to 50 mrad

- 3 different ring sizes, 5 staggered layers of blocks, ≈20 X_o)
- 5/12 completed stations In about 1 year
- Custom time-over-threshold electronics (double threshold, down to ≈1/5 MIP)
- $\sigma_{\rm E} \approx 9\%/{\rm sqrt(E[GeV])}$
- $\sigma_t \approx 210 \text{ ps/sqrt}(\text{E[GeV]})$

Time Resolution Vs Momentum

Muon vetoes

3 muon veto sections: Partially by re-using hadron calorimeter from NA48

- MUV1:
 - 24 planes (iron/scintillator+WLS)
 - 6 cm strips (x-y)
 - 13 ph.el./MIP
- MUV2:
 - 22 planes (iron+scintillator)
- MUV3:
 - Fast trigger signals
 - Scintillator pads with direct readout of light in an (air) black box, to suppress reflections and Cerenkov

Trigger and DAQ

- High trigger efficiency (>95%)
- Low random veto (<1%)
- Fully digital after Front-Ent
- Level-0 implemented in hardware, 10 MHz → 1 MHz
 - e.g. RICH minimum multiplicity, Muon veto, LKr , photon veto
- Level-1, at the level of sub-detector (→ 100 KHz) and Level-2 (on full event,
 - → few KHz) implemented in software
 - e.g. vertex out of fiducial volume
- High data bandwidth (≈5 GB/s)
- No zero suppression (for candidate events
- Try to use common TDAQ board
 - (TEL62, based on LHCb TELL1)
 - HPTDC mezzanine card
- Custom solutions for Liquid Krypton and Gigatracker (too much data!)

Trigger and DAQ

The NA62 measurement of R_{K}

• Precision measurement of $R_{K} = BR(K^{+} \rightarrow e^{+}v) / BR(K^{+} \rightarrow \mu^{+}v)$

S.

 Dedicated data taking in 2007/2008, ≈120000 events, with NA48 detectors

Full data-set **new result** in the talk by **Evgueny Goudzovski** (Friday, July 22nd, 17:05, **Flavour Physics & Fundamental Symmetries**)

Schedule

Schedule

- E Land
- Beam line: full system will be installed in 2011.
- Beam Dump: completion expected in 2011.
- Vacuum tank and vacuum system: full system should be available; some pumping units could be staged (depending on number of installed Straw modules).
- CEDAR: full system should be available.
- GTK: the final pixel detectors will not yet be available; possibility to use prototype sensors in the Technical Run.
- LAV: plan to install 10 (or 9) LAV modules. LAV12 will not be ready. If LAV10 is not ready we would install the empty vessel to complete the vacuum tank.
- STRAW: possibility to complete 3 or 4 (out of 8) chamber modules. Chambers 1, 2 and 4 could be equipped with one (instead of two) modules each. The missing modules will be replaced by empty module frames.
- RICH: plan to install the RICH vessel in Spring 2012, including the central beam pipe.
- LKR: the calorimeter will still be read out by the existing electronics (CPD/SLM) but prototypes of the final electronics (CREAM) will be tested.
- CHOD: use the existing NA48 CHOD with prototype read-out.
- MUV: full system.

Conclusions

- Very clean mode; sensitivity to New Physics also at high energy scales: complementary to direct searches at LHC
- NA62 detectors have been carefully designed and validated (R&D, tests, Monte Carlo)
- Now construction is proceeding steadily
- Also Gigatracker design is well advanced (sensor, readout chip, cooling, etc.)
- Now refining TDAQ system ...
- ... and getting ready to run:
 - Technical run already at the end of year 2012 (without Gigatracker)
 - Physics run planned at SPS restart after long shutdown (2014)

Liquid Krypton efficiency

20

Monte Carlo: event selection

Cut on reconstructed momentum: 15 < P_{track} < 35 GeV/c

Monte Carlo: cut on m²_{miss}

Kaon tagger: differential Cerenkov

- H_2 @ 3.86 bar
- 100 photons/K
- K @ 50MHz
- pprox 250 PMs
- 3MHz/PM
- $\sigma_t < 100 \mathrm{ps}$

LAV readout electronics

Time-over-threshold discriminator: dual threshold

Lo trigger rates

	10	>
		1/
5	200	
	X	>

gradually add signals on top of the previous

	kHz	CHOD	* RICH	* MUV3	* LKR	* LAV_12	* LAV_AL L
$\pi\pi^0$	1859	1255	1128	1078	200	134	85
LI.Ve	5719	3786	3376	1	1	1	1
ANT	503	393	379	315	89	89	89
$\pi\pi^0\pi^0$	158	105	97	90	3	1	0
$\pi^0 ev$	456	265	243	243	41	28	20
$\pi^0\mu u$	301	195	178	1	1	0	0
TOT	8998	5999	5400	1727	334	254	196
π vv (P,Z cuts) eff. %		93	82	77	75	75	75

Data volume

New beam dump

