ATLAS-IBL: a challenging first step for ATLAS Upgrade at the sLHC

A. La Rosa / U. Wisconsin and CERN on behalf of the ATLAS Collaboration

International Europhysics Conference on High Energy Physics. Grenoble, France July 21-27 2011.

Why Upgrades ?

- LHC/ATLAS physics goals
 - Improve standard model (SM) measurements (W, Z, top)
 - Higgs: understand the electroweak symmetry breaking
 - Beyond the SM: SUSY, extra dimension, even something totally new
- Whatever will be discovery in the next years at LHC, need much data to understand what has been discovered
- Higher luminosity allows extending discovery/ studies to higher masses and processes of lower cross-section
- LHC has plans of upgrade by increasing luminosity to collect ultimately ~ 3000 fb⁻¹

Consequence:

- higher data rate
- higher occupancy
- more radiation damage
- Detector upgrade are necessary due to:
 - improve TDAQ
 - finer granularity to limit occupancy
 - more rad-hard sensors and electronics

In this talk:

- Phase-0: new Pixel layer (IBL);
- Phase-2: Overview of new Silicon Inner Tracker.

Calorimeter and Muon Systems will be also upgraded (their projects are not treated in this talk).

ATLAS Insertable B-Layer (IBL)

Installation of new pixel layer (the major project for ATLAS/ Phase-0)

- Excellent vertex detector performance is crucial:
 - improve heavy flavor tagging, primary and secondary vertex reconstruction/ separation
- Additional innermost layer will boost tracking performance
 - adds additional redundancy of the detector in case of radiation damage
- Idea: Insertion of new pixel layer inside current Pixel detector: Insertable B-Layer (IBL)
- Phase-1 was initially in 2016 and now is postponed to 2017 or 2018
 - Advance the project schedule and *install it in 2013/14*.

Two competing sensor technologies: Planar and 3D pixel sensors.

Diamond tech was dropped: sensors production not compatible with IBL in 2013

IBL mounted on new beam-pipe Length: ~64cm Envelope: R_{IN}=31mm, R_{OUT}=40mm 14 staves, each stave: 32 FE-I4 chips - for 3D sensors: 1 sensor + 1 chip = 1 module - for Planar sensors: 1 sensor + 2 chips = 1 module

Total: 448 3D modules or 224 planar modules

FE-I4 R/O chip

- IBM 130nm CMOS tech.
- cel size: 50um x 250um
- 80 (col) x 336 (row)= 26880 cels
- 2cm x2cm

IBL sensor specs and module prototyping

	PLANAR	3D
Active size W x L [mm ²]	16.8 x 40.9	16.8 x 20.0
Total size W x L [mm ²]	18.54 x 41.27	18.8 x 20.5
Thickness [mm]	0.20	0.23
Typical depletion voltage [V]	< 35	<15
Typical initial operation voltage [V]	60 (V _{dep} +30V)	25
At of at end of lifetime [V]	1000	180

Sensor specifications for IBL:

- qualify to 5x10¹⁵ n_{eq} cm⁻²
- sensor max. power dissipation: 200 mW/cm² at -15 °C
- single-hit efficiency > 97%

IBL sensor types

Planar n-in-n Slim Edge Design (CiS)

- minimize inactive edge by shifting the guard-rings underneath active pixel region
 - ➡ 200 250 um inactive edge achievable
- manufactured by CiS like present Pixel

3D Slim Edge Design (FBK and CNM)

- column through ~full bulk with 2 electrodes per pixel (so-called 2E-type)
- depletion horizontally (short depletion width leads to low bias voltage)
- manufacturing yield now being tested with pre-production runs by FBK and CNM

Irradiation

- A total of 77 modules (bump-bonded & assembles) have been produced
 - 40x Silicon 3D
 - 37x Silicon Planar n-in-n
 - Several irradiation campaigns have been performed
 - 11x IBL 1-chip modules (3D+Planar) have been irradiated at IBL target fluence (5x10¹⁵n_{eq}/cm²)
 - Proton irradiation at KIT (nominal beam energy: 23 MeV)
 - Due to the low energies used the ionizing radiation damage to the FE went well beyond the requirements (250 Mrad). Estimated TID: ~750 Mrad (with 23 MeV) and ~1Grad (with ~18 MeV)
 - Neutron irradiation with n-TRIGA reactor in Ljubljana

FE-I4 Assemblies for Sensor Review									
			Thickness	Sensor	Nu	Target Fluence			
Foundry	Technology	Batch ID	(µm)	EdgeType	Done	p-irradiated	n-irradiated	(neq/cm2)	
		<pre>cn in n 150></pre>	150	slim	2	1		2 x 10e15	
			150	conservative	2				
		cn-in-n 200>	200	slim	12	3	2	5 x 10e15	
CIS			200	conservative	2		1	5 x 10e15	
		<n-in-n 250=""></n-in-n>	250	slim	9	1	2	5 x 10e15	
			230	conservative	10		1	5 x 10e15	
CNM	3D double side	5306	230	slim	16	1		2 x 10e15	
CIVINI		5500	230	51111	10	3	2	5 x 10e15	
	3D, double side	ATLAS 07	230	slim	8				
FBK	3D double side		230	slim	16	1		2 x 10e15	
		ATEXS 05	230	51111	10	1		5 x 10e15	
				Total Planar	37		11		
				Total 3D	40		8		
				Grand Total	77		19		

Green: IBL Design

Test-beams

BL A

- Three test-beam periods:
 - February and April in DESY
 - June at CERN
- Most of devices ready/ prepared for CERN test-beam
 - original 24 days, then reduced due to TAX problem and rescheduled. Very short beam time finally delivered ~100 hours (2.5 days) !

			N	/lea	asu	rec	l de	vic	es	Angle (r				(de	(degree) B-field									Legend			
Test Beam	Beam type	Sensor Techn				0							15						ON	1	Non-irradiated						
		Planar																							p-irradiated 2e15		
Desy Feb	4 GeV electrons	3D-CNM																	Τ	Τ			Τ		p-irradiated 5e15		
	3D-FBK	3D-FBK																							n-irradiated 5e15		
		Planar																		Τ	Π						
Desy Apr	4 GeV electrons	3D-CNM																							CERN North Area (H8)		
	3D-FBK																							EUDET telescope inside			
		Planar-CiS																	Τ	Τ	Π			Τ	Morpurgo magnet (1.6T)		
CERN June 180 GeV pions	3D-CNM																										
	3D-FBK																										

Preliminary: Unirrad sensors + FE-I4 at DESY TB

Charge collected measured in units on 25ns of Time over Threshold (TOT)

Preliminary: Irrad Planar + FE-I4 at CERN TB

SCC61: Planar 200um thick, p-irrad 6x10¹⁵ n_{eq} cm⁻², HV=-1000V, phi=15°

LUB2: Planar 250um thick, n-irrad 4x10¹⁵ n_{eq} cm⁻², HV=-1000V, phi=15°

Preliminary: Irrad 3D + FE-I4 at CERN TB

SCC97: 3D-CNM 230um thick, p-irrad 6x10¹⁵ n_{eq} cm⁻², HV=-140V, phi=15°

SCC87: 3D-FBK 230um thick, p-irrad 5x10¹⁵ n_{eq} cm⁻², HV=-140V, phi=15°

EPS-HEP 2011 - A. La Rosa

P. Grenier, et al. CERN 4/7/11 10

Preliminary: Cell efficiency map

SCC61: Planar 200um thick, p-irrad 6x10¹⁵ n_{eq} cm⁻² (Large TID), HV=-1000V, phi=15°

- Efficiency distribution within pixel cells.
- Efficiency loss at cell borders mainly due to the charge sharing.
- More charge loss on bias side: trapping in bias dots and grid

SCC97: 3D-CNM 230um thick, p-irrad 6x10¹⁵ n_{eq} cm⁻² (Large TID), HV=-140V, phi=0°

Efficiency loss for tracks going trough (not filled) electrodes: no charge produced

Large effect on bias electrodes as lower field.

IBL schedule key dates

Activities	Starting	Ending
FE-I4_B	July 11: Submission	Oct to Dec 11 for wafer test
Bump bonding	Aug 11: pre-production	July 12: Completion
Module assembly	Feb 12: 1 st modules ready for loading	Oct to Dec 12 depending of sensor
Module loading	Feb12:> 4 staves to be ready by Apr 12	Jan 13: completion
Stave loading	Sept 12: starting with the 1st available staves	Feb-Mar 13: Completion
Final tests and commissioning	Sept 12	July 13: IBL Installation

[H. Pernegger, VERTEX2011]

• Tight schedule for installation in 2013, very challenging but possible !

EPS-HEP 2011 - A. La Rosa

Upgrade for phase-2

 ~2022: to prepare for the following period of ~10 years after having collected some 100 fb⁻¹ at sqrt(s)=14 TeV. To run at 5x nominal luminosity: 5x10³⁴ with luminosity leveling, collecting a total of 3000 fb⁻¹ and 200 events per beam crossing

[T. Kawamoto, TIPP2011]

Strip and Pixel prototyping

STRIP prototyping

- n-in-p sensors baseline (rad hard verified up to 2x10¹⁶ n_{eq} cm⁻² and with irrad modules up to to $2x10^{15} n_{eq} \text{ cm}^{-2}$)
- Successful production (ATLAS07 sensors) at Hamamatsu —
- Extensive stave prototyping program exits (focused on shortstrip)
- New front-end VLSI chip: ABCNext (prototyped in 250um — CMOS tech and underway in 130um CMOS tech.)
- Hybrid with FE chips glued directly to sensor —
- Sensor glued to cold mechanical support (Stave)

PIXEL prototyping

- Basic concept:
 - double side staves
 - carbon foam
 - flex inside of stave
 - 2x2 MultiChip-Modules
- Carbon fiber facing **Pixel modules** Coolanttube Multi-layer cable with pre-bent tabs and connectors Carbon foam M. Garcia-Sciveres

electrodes

- Several sensors under investigation for radiation hardness
 - outer layers: planar (n-in-n and n-in-p)
 - innermost layer:

Thin Planar, 3D, Diamond

and GOSSIP (Gas on Slimmed Si-Pixels) n-active edge

Summary

- ATLAS Tracker plans to upgrade in two (three) phases:
 - Phase-0: Insertion of new pixel inside current Pixel detector Insertable B-Layer (IBL)
 - First technology step to sLHC (sensors, FE, readout system, cooling, etc...)
 - Installation in 2013: start production of IBL now
 - Phase-1: Under consideration new Pixel detector based on IBL experience
 - Phase-2: Full all-Silicon tracker replacement with pixels, short-strips and long-strips
 - Radiation-hardness for
 - innermost pixel layer being investigated
 - -outer pixel and strip layer established with planar Silicon
 - Prototype program for outer pixel layers has started
 - Short-strip prototypes already under construction
 - Upgrade also planned for may other subsystems:
 - new front-end electronics and trigger architecture, upgrades to far forward calorimetry, possible implementation of level-1 track trigger, possible further improvements to forward muon stations, ...

Additional Slides

IBL Layout: 14 staves around beam-pipe

IBL Staves and module arrangement

IBL sensor floor-plan

- Planar n-in-n sensor type
- 4x IBL (2-chip sensor) tiles
- 4x 1-chip sensor tiles
- test structures

- 3D n-in-p sensor type
- 8x IBL (1-chip sensor) tiles / for both producers
- test structures

FE-I4: low threshold operation

- Studied on Planar and 3D assemblies (irradiated with proton to 5x10¹⁵n_{eq}/cm²)
 - Noise occupancy increase when threshold below 1500e⁻
 - At 1100e⁻, occupancy is ~10⁻⁷ bits/BC/pixel

 Low threshold operation with irradiated assemblies demonstrated

