Exclusive (Semi) Leptonic Decays at Belle

Phillip Urquijo, University of Bonn

On Behalf of the Belle Collaboration

EPS Grenoble July 21, 2011

CKM Element Magnitudes

CKM matrix elements are **fundamental** parameters of the Standard Model and cannot be predicted.

Exploit unitarity constraint to look for new physics \rightarrow angle from CP asymmetries and size from $|V_{CKM}|$.

|V_{ub}| and |V_{cb}| from semileptonic B decays

Decay properties depend directly on $|V_{cb}| \& |V_{ub}|$ and m_b in perturbative regime (α_s^n).

Phillip Urquijo

(Semi)Leptonic Decays at Belle, EPS2011

CKM Element Magnitudes

CKM matrix elements are **fundamental** parameters of the Standard Model and cannot be predicted.

Exploit unitarity constraint to look for new physics \rightarrow angle from CP asymmetries and size from $|V_{CKM}|$.

|V_{ub}| and |V_{cb}| from semileptonic B decays

Decay properties depend directly on $|V_{cb}| \& |V_{ub}|$ and m_b in perturbative regime (α_s^n).

But quarks are bound by soft gluons: non-perturbative long distance interactions of *b* quark with light quark.

Exclusive decays: $B \rightarrow D^{(*)} l v$

• Differential decay rate proportional to $|V_{cb}|^2$ and form factors.

$$\frac{d\Gamma(B \to D^*\ell\nu)}{dwd\cos\theta_{\ell}d\cos\theta_{V}d\chi} = \frac{G_{F}^{2}}{48\pi^{3}}|V_{cb}|^{2}m_{D^{*}}^{3}(w^{2}-1)^{1/2}P(w)\mathcal{F}(w,...)^{2} \qquad |V_{ub}| + \mathcal{F}(w) \Rightarrow \mathcal{F}(w,\cos\theta_{\ell},\cos\theta_{\ell},\cos\theta_{\ell},\chi,R_{1},R_{2},\rho^{2})$$

$$w \equiv v_{B} \cdot v_{D^{(*)}} = \frac{p_{B} \cdot p_{D^{(*)}}}{m_{B} \cdot m_{D^{(*)}}} : D^{(*)} \text{ boost}$$

$$B_{MB} \cdot m_{D^{(*)}} = \frac{p_{B} \cdot p_{D^{(*)}}}{m_{B} \cdot m_{D^{(*)}}} : D^{(*)} \text{ boost}$$

• Fit angular distributions θ_{lep} , θ_V , χ to determine form factors $R_{1} R_{2} R_{1}^{2} R_{1}^{2}$

$B^{o} \rightarrow D^{*-}l^{+} \gamma$

- 772M BBbar events, 123K D*- I+ candidates
- FF pars determined from fit to 1D hists (10 bins) of *w*, cosθ_{lep}, cosθ_V, χ
- 40x40 covariance input to $F(1)|V_{cb}|$ fit

4

universität**bonn**

Phillip Urquijo
(Semi)Leptonic Decays at Belle, EPS2011

$B^{o} \rightarrow D^{*} l^{+} v$

Phillip Urquijo
(Semi)Leptonic Decays at Belle, EPS2011

5

$B \rightarrow D_s K l \nu$

- Puzzle: *Measured* sum of exclusive mode BR's
 X_c=D+D*+D** doesn't match inclusive BR (10-15% unaccounted).
 - Explore mass region above $m(D_sK)=2.46$ GeV where **resonant** and **non-resonant** contributions are present.
 - Disentangling D_sKlv and D_s*Klv gives new insights for modelling this region.
 - Background to $B_s \rightarrow D_s X \mid v$ at Y(5S) and hadron colliders. e.g. at LHCb $(f_u+f_d)/f_s \sim 6$

- BR small due to kinematics, need efficient reco.
 - Select B_{sig} in $D_s(\gamma)Kl^+$ ($D_s \rightarrow \Phi \pi$). Remaining particles must be consistent with B decay (B_{tag} in semileptonic mode)
 - Minimal signal side selection to limit model dependence.

Phillip Urquijo 🗆 (Semi)Leptonic Decays at Belle, EPS2011

$B \rightarrow D_s K l \nu Fit$

- Signal PDF parameterised from MC
- Background PDF derived from MC and data sidebands.
- Measure D_sK and D_s^*K modes simultaneously to measure cross feed.

657M BBbar

 $X_{\rm mis} = \frac{(E_{beam} - E_{\rm vis}) - p_{\rm vis}}{\sqrt{E_{beam}^2 - M_B^2}}$

$B \rightarrow D_s K l \nu BR$

657M BBbar

- First time measured separately. Mo
- Systematics highly correlated: combined has high signif.
- Only a small part of $B \rightarrow X_c / v$

Mode	BR: Belle Preliminary
D _s ΚΙν	$(3.0 \pm 1.2_{\text{stat}}^{+1.1} - 0.8_{\text{sys}}) 10^{-4}$
D _s * ΚΙν	$(2.9 \pm 1.6_{\text{stat}}^{+1.1} - 1.0 \text{ sys})10^{-4}$
Combined	6 σ significance

Systematic Error	ΔBR (D _s K)%	ΔBR (D _s [*] K)%	
Tracking,KID,LeptID		8	
$BR(D_s \rightarrow \phi \pi)$		6	Efficiency
Signal Efficiency		21	determined
N(B+B-)		2	with data:
Signal PDF (MC)	+27, -7	+17, -22	dependence
BKG PDF (MC)	+6, -8	+20,-17	ucpendence
BKG PDF (Data)	+5, -1	3	
Cross Feed	1	2	

• Consistent with prev. measurement (Babar) arXiv:1012.4158 [hep-ex] $\mathcal{B}(B^- \to D_s^{(*)+} K^- \ell^- \overline{\nu}_\ell) = [6.13^{+1.04}_{-1.03}(\text{stat.}) \pm 0.43(\text{syst.}) \pm 0.51(\mathcal{B}(D_s))] \ 10^{-4} > 5 \sigma$ Phillip Urquijo \Box (Semi)Leptonic Decays at Belle, EPS2011 8

$|V_{ub}|$ from $|B_{ub}| = \pi \ell v$

$$\frac{d\Gamma}{dq^2}(B \to \pi l\nu) = \frac{G_F^2}{24\pi^3} p_\pi^3 |V_{ub}|^2 |f_+(q^2)|^2$$

Method: Untagged (with v reconstruction)

- Identify Cremanon encourses and indetal approaches:
- Neutrino 4-momentum from missing 3-momentum • semileptonic B tags $p_{\nu} = (|\vec{p_{\text{miss}}}|_{\vec{p_{\text{miss}}}})_{\text{hadronic B tags}} (p_{\ell} + p_{\nu})^2 = (p_{\text{B}} - p_{\pi})^2$

Form-factor calculations using different methods
 Form-factor calculations using different
 Measumeinthods of q²→reduces model

dependence

• Compare to Lattice, LCSR, Quark model

Phillip Urquijo

(Semi)Leptonic Decays at Belle, EPS2011

 q^2 is calculated as the weighted average along the cone (Y-average q^2).

9

$B \rightarrow \pi l \nu$ Fit

Phillip Urquijo 🗆 (Semi)Leptonic Decays at Belle, EPS2011

10

universitätbo

Leptonic B decays: $B \rightarrow \nu \overline{\nu}$

• SM strongly helicity suppressed by factor of order $(m_v/m_B)^2$

$$\mathcal{B}(B^{0} \to \nu \overline{\nu}) = \tau_{B^{0}} \frac{G_{F}^{2}}{\pi} \left(\frac{\alpha}{4\pi \sin^{2} \Theta_{W}}\right)^{2} F_{B^{0}}^{2} m_{\nu}^{2} m_{B^{0}}$$
$$\times \sqrt{1 - 4m_{\nu}^{2}/m_{B^{0}}^{2}} |V_{tb}^{*} V_{td}|^{2} Y^{2}(x_{t}),$$

G. Buchalla, A.J. Buras, Nucl. Phys. B 400,225(1993)

• Any signal is a sign of New physics

- Several New Physics models predict significant BRs for invisible decay of B⁰
 - e.g. **R-parity** violating models:

$$10^{-7} < \mathcal{B}(B^0 \to \bar{\nu}\tilde{\chi}_1^0) < 10^{-6}$$

NuTeV Collab., T. Adams et al., PRD 65, 015001 A. Dedes, H. Dreiner, and P. Richardson, PRL 87 41801

universitätbo

Phillip Urquijo 🗆 (Semi)Leptonic Decays at Belle, EPS2011

$B \rightarrow \nu \overline{\nu}$ Fit

Reconstruct one *B* in hadronic mode, **veto** extra tracks, π^0 or K_L

- Clean up some $E_{ECL} \sim 0$ Bkg. from non-B with $\cos\theta_T$ (Angle of B_{tag} thrust axis w.r.t. beam axis)
 - Non-B more likely to "lose" energy in beam pipe.

657M BBbar

Belle **Preliminary**

Results	Yield(±stat)	
Signal	9±6	
Other BB	132 ⁺²² -23	
Rare B	~4	
Non-B	-23 ⁺²² -17	

$B \rightarrow v \bar{v} Limit$

• Obtain likelihood L(N_{sig}) distribution for the signal yield in fit. (Small) systematic added by smearing likelihood function.

90% C.L. BR < 1.3 x 10⁻⁴ Belle Preliminary 657M BBbar

c.f. (Babar) BR < 2.2×10^{-4}

- K_L , π^0 , track veto efficiencies calibrated with $B \rightarrow D^{(*)} I \nu$ in low E_{ECL} region.
- Conservative tagging efficiency systematic uncertainty.

Systematics: Belle Preliminary

N (B^0B^{0bar})	1.4%	
Tagging Efficiency		8.3%
Veto	Track	1.6%
Efficiency	π^0	2.0%
	K _L	2.0%
Sum	9.0%	
Sam		5:070
Uncertainty of	Signal	±0.2
Uncertainty of PDF modeling	Signal OtherB	±0.2 +1.6/-1.4
Uncertainty of PDF modeling	Signal OtherB Non B	±0.2 +1.6/-1.4 +1.9/-2.2
Uncertainty of PDF modeling	Signal OtherB Non B RareB	±0.2 +1.6/-1.4 +1.9/-2.2 ±0.1

Phillip Urquijo 🗆 (Semi)Leptonic Decays at Belle, EPS2011

universität**bonn**

New full reconstruction

- *New* Neurobayes (neural network) tag B reconstruction in hadronic modes.
- >~3 x statistical gain over previous tagged analyses, with improved S/B.

Summary of Belle (Semi)Leptonic Results

- Exclusive |V_{cb}| = (38.0±0.2±1.1±0.7(FF)) x 10^{-3 (Belle)}
- Exclusive |V_{ub}|=(3.51±0.34) x 10⁻³ (Belle&LQCD fit)
 - •tension with inclusive measurements $\sim 2-3\sigma$
- **BR**($B \rightarrow D_s K l v \& B \rightarrow D_s^* K l v$) measured separately for the first time, key for $B_s \rightarrow D_s | v X$ measurements.
 - BR(D_sKlv)=3.0±1.2^{+1.1}-0.8 x 10⁻⁴ (Belle preliminary)
 - BR(D_s*Klv)=2.9±1.6^{+1.1}-1.0 x 10⁻⁴ (Belle preliminary)
- B→invisible final states: New limit:
 BR<1.3 x 10⁻⁴ (Belle preliminary)
- New B tagging technique developed. Increases statistical power of all missing energy (ν) decay analyses that use hadron tag ~3x. Results coming.

Phillip Urquijo 🗆 (Semi)Leptonic Decays at Belle, EPS2011

End

B-factory Approaches to Measuring B→Xlv

$B \rightarrow v \bar{v}$ Reconstruction

$\cos\theta_{T}$ Criteria

Calorimeter energy

Phillip Urquijo 🗆 (Semi)Leptonic Decays at Belle, EPS2011

19

