D(s)+ decays and CPV/mixing at Belle

vendredi 22 juillet 2011 09:45 (15 minutes)

We report a measurement of D^0 - \bar{D}^0 mixing in $D^0\to K^0_S\pi^+\pi^-$ decays using a time-dependent Dalitz plot analysis.

We will also present an updated measurement of the mixing parameter y_{CP} in decays $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$.

We will present a measurement to search for CP violation in charged D meson decays by measuring the CP violating asymmetry difference between Cabibbo-suppressed decays $D^+ \to K^+K^-\pi^+$ and Cabibbo-favored

decays $D_s^+ \to K^+K^-\pi^+$ in a mass region of the ϕ resonance.

We have searched for CP violation in the decays $D^0 \to K_S^0 P^0$ where P^0 denotes a neutral pseudo-scalar meson which is either a $\pi^0,$ $\eta,$ or $\eta'.$ No evidence of significant CP violation is observed. We report the most precise CP asymmetry measurement in the decay $D^0 \to K_S^0 \pi^0 \text{ to date: } A_{CP}^{D^0 \to K_S^0 \pi^0} = (-0.28 \pm 0.19 \pm 0.10) asymmetries inthedecays D^0 \to K_S^0 \eta \text{ and } D^0 \to K_S^0 \eta'$:

$$A_{CP}^{D^0 \to K_S^0 \eta} = (+0.54 \pm 0.51 \pm 0.16) A_{CP}^{D^0 \to K_S^0 \eta'} = (+0.98 \pm 0.67 \pm 0.14) respectively.$$

We report the first observations of the decay $D^+ \to K^+ \eta^{(')}$ and the search for the CP violation in the decay $D^+ \to \pi^+ \eta^{(')}$. The branching ratios with respect to their normalization modes and CP measurements will be presented.

We report preliminary results on the time-integrated asymmetry of the decays D^0 and \bar{D}^0 to $\pi^+\pi^-\pi^0$.

Results of the Dalitz plot analysis of ${\cal A}_{CP}$ for two approaches – model dependent and model independent – are presented.

The results are obtained from a large data sample collected on the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonance with the Belle detector at the KEKB asymmetric energy e^+e^- collider.

Author: Dr STARIC, Marko (Jozef Stefan Institute)

Orateur: Dr STARIC, Marko (Jozef Stefan Institute)

Classification de Session: Flavour Physics and Fundamental Symmetries

Classification de thématique: Flavour Physics and Fundamental Symmetries