$D^+_{(s)}$ decays and their CPV at Belle

Marko Starič

Jožef Stefan Institute, Ljubljana

EPS HEP2011

< 同 ト く ヨ ト く ヨ ト

- Search for CPV in $D^+_{(s)} \rightarrow \phi \pi^+$
- Search for CPV in $D^0 o K^0_s \pi^0, K^0_s \eta, K^0_s \eta'$
- Search for CPV in $D^+ \to \pi^+ \eta, \pi^+ \eta'$
- \bullet Observation of DCS decays $D^+ \to {\cal K}^+ \eta, {\cal K}^+ \eta'$

CP violation in charm

- Provides a unique possibility to search for new physics (NP)
- Very small effect in SM:
 - time integrated decay rate asymmetry $A_{CP} \lesssim \mathcal{O}(0.1\%)$
 - NP can enhance A_{CP} to $\mathcal{O}(1\%)$
- Two kinds of CPV.
 - CPV in decays (direct CPV)
 - mixing induced CPV (indirect) \rightarrow common to all D^0 decays
- Charged D mesons → only direct CPV
- Direct CPV in NP models:
 - SCS decays (loop & tree) likely to be affected
 - CF or DCS (tree) very unlikely

- \rightarrow decay mode dependent

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Charm production at Belle

B-factories are also charm-factories: $\sigma_{c\overline{c}}\approx\sigma_{b\overline{b}}$

KEKB B-factory

- Asymmetric e^+e^- collider
- primarily at $\Upsilon(4S)$
- also $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \Upsilon(5S)$

•
$$\int \mathcal{L}dt = 1 \text{ ab}^-$$

- $\bullet\,$ Charm production $\sigma_{c\overline{c}}\sim 1~{\rm nb}\,\longrightarrow \sim 10^9$ charm events at Belle
- Easy to reject D mesons from B decays using simple kinematic cuts:
 - $p_D^* > 2.5 ~{
 m GeV/c}$ at $\Upsilon(4S)$
 - $p_D^{*} > 3.1~{
 m GeV/c}$ at $\Upsilon(5S)$

Belle II will collect 50 times more

4 / 15

Search for CPV in $D^+_{(s)} \to \phi \pi^+$ 955 fb⁻¹

- \bullet By measuring A_{CP} difference btw. $D^+ \to \phi \pi^+$ and $D^+_{\rm s} \to \phi \pi^+$
 - $D^+ \rightarrow \phi \pi^+$ is SCS decay
 - $D^+_s
 ightarrow \phi \pi^+$ is CF decay (CPV very unlikely)
- ϕ reconstructed in $\phi \to K^+K^-$
- Measured decay rate asymmetry:

$$A_{
m rec} = A_{CP} + A_{FB}(\cos \theta^*) + A_{\epsilon}^{KK} + A_{\epsilon}^{\pi}(p_{\pi}, \cos \theta_{\pi})$$

- $A_{FB}(\cos \theta^*)$ is an odd function of $\cos \theta^*$
- A_ϵ^{KK} = 0 for φ → K⁺K⁻, however due to interference of φ with other intermediate states it's slightly different from zero (backup slide)
- Taking the difference btw. D^+ and D_s^+ in bins of $(\cos \theta^*, p_{\pi}, \cos \theta_{\pi})$:

$$\Delta A_{rec}(\cos \theta^*, p_{\pi}, \cos \theta_{\pi}) = \Delta A_{CP} + \Delta A_{FB}(\cos \theta^*)$$

- To obtain ΔA_{CP} :
 - calculate weighted average of $\Delta A_{\it rec}$ in bins of $\cos\theta^*$
 - extract ΔA_{CP} and ΔA_{FB} by adding/subtracting bins at $\pm \cos \theta^*$

Search for CPV in $D^+_{(s)} o \phi \pi^+$ 955 fb⁻¹

- Event selection
 - decay and production vertex fits
 - $p_D^* > 2.5$ (3.1) ${
 m GeV/c}$ to reject D's from B decays
 - $|M_{KK} m_{\phi}| < 16 \,\,{
 m MeV/c^2}$
 - $p_{\pi} > 0.38 \ \mathrm{GeV/c}$
 - $|\cos\theta_{\rm hel}| > 0.28$
- D[±]_(s) yields obtained by fitting inv. mass distributions in 10×10×10 bins of (cos θ*, p_π, cos θ_π)
 - found 238 $\!\times 10^3~D^+$ and 723 $\!\times 10^3~D_s^+$

Search for CPV in
$$D^+_{(s)} \to \phi \pi^+$$

 955 fb^{-1}

Results

• Assuming negligible CPV in $D_s^+ \to \phi \pi^+$

$${\cal A}_{CP}^{D^+ o\phi\pi^+}=(+0.51\pm0.28\pm0.05)\%.$$

- No evidence for CPV in agreement with SM expectations
- Precision improved by 5× compared to previous results (CLEO, BaBar)
- No significant difference in A_{FB} btw. D^+ and D_s^+

to be submitted to PRL

$\overset{igoddless}{=}$ Search for CPV in $D^0 o {\cal K}^0_s \pi^0, {\cal K}^0_s \eta, {\cal K}^0_s \eta'$ 791 fb $^{-1}$

PRL 106, 211801 (2011)

- These decays are mixtures of CF and DCS
- Decay $D^{*+}
 ightarrow D^0 \pi^+$ used to tag flavor of D^0
- Measured decay rate asymmetry:

$$A_{
m rec} = A_{CP} + A_{FB}(\cos \theta^*) + A^{\pi}_{\epsilon}(p_{\pi}, \cos \theta_{\pi})$$

- A^{π}_{ϵ} measured using tagged and untagged $D^{0} \rightarrow K^{-}\pi^{+}$
- correct measured asymmetry

$$A_{
m rec}^{
m cor} = A_{
m rec} - A_{\epsilon}^{\pi}$$

• extract A_{CP} and A_{FB} by adding/subtracting bins at $\pm \cos \theta^*$

Search for CPV in $D^0 \to K^0_s \pi^0, K^0_s \eta, K^0_s \eta'$ 791 fb⁻¹

Results

$$\begin{array}{ccc} & & A_{CP} \ (\%) \\ \hline D^0 \to K^0_s \pi^0 & -0.28 \pm 0.19 \pm 0.10 \\ D^0 \to K^0_s \eta & +0.54 \pm 0.51 \pm 0.16 \\ D^0 \to K^0_s \eta' & +0.98 \pm 0.67 \pm 0.14 \end{array}$$

- No evidence for CPV
- Contribution from CPV in K^0 :

$$A_{CP}^{K^0} = (-0.332 \pm 0.006)\%$$

- Subtract $A_{CP}^{K^0}$ to get intrinsic charm CPV
- Assuming no direct CPV in $D^0 o K^0_s \pi^0$

$$a^{
m ind} = A^{K^0_s \pi^0}_{CP} - A^{K^0}_{CP} = (+0.05 {\pm} 0.19 {\pm} 0.10)\%$$

Search for CPV in $D^+ \rightarrow \pi^+ \eta, \pi^+ \eta'$ 791 fb⁻¹

arXiv:1107.0553 (submitted to PRL)

- These are SCS decays; we search for direct CPV.
- $D^+
 ightarrow \pi^+ \eta$ reconstructed in $\eta
 ightarrow \pi^+ \pi^- \pi^0$ (to fit decay vertex)
- $D^+ \to \pi^+ \eta^\prime$ reconstructed in $\eta^\prime \to \pi^+ \pi^- \eta, \ \eta \to \gamma \gamma$
- Event selection:
 - decay vertex fit
 - decay vertex required to be detached from e^+e^- IP
 - cut on $\eta(\eta')$ momentum
 - cut on D^+ CMS momentum
 - last three criteria optimized by maximizing N_s/σ_s using MC

${\buildrel \ } {\buildrel \ } {\buildrel \ } {\buildrel \ } {\buildrel \ } {\buildre \ } {\buildre$

• Measured decay rate asymmetry:

$$m{A}_{
m rec} = m{A}_{CP} + m{A}_{FB}(\cos heta^*) + m{A}^{\pi}_{\epsilon}(m{p}^{\pi}_{T},\cos heta_{\pi})$$

- To correct for A_{FB} and A^{π}_{ϵ} we use CF decays $D^+_s \rightarrow \phi \pi^+$ (assuming no CPV and equal A_{FB})
- Subtraction done in bins of $(p_T^{\pi}, \cos \theta_{\pi}, \cos \theta^*)$
- binning optimized to avoid large statistical fluctuations in bins

Results:

 $\begin{array}{c|c} \mbox{decay} & A_{CP} \ (\%) \\ \hline D^+ \to \pi^+ \eta & +1.74 \pm 1.13 \pm 0.20 \\ D^+ \to \pi^+ \eta' & -0.12 \pm 1.12 \pm 0.20 \end{array}$

No evidence for CPV, improved sensitivity $(2-3\times)$ M. Starič (IJS) $D_{f_c}^+$ decays and their CPV at Belle

$extsf{Generation}$ Observation of DCS decays $D^+ o \mathcal{K}^+ \eta(\eta')$ 791 fb $^{-1}$

- Within the same analysis we searched for DCS decays $D^+ o {\cal K}^+ \eta(\eta')$
- Last three selection criteria re-optimized: maximizing $\epsilon_{
 m sig}/\sqrt{N_B}$
- First observation of DCS decays:

Observation of DCS decays $D^+ \rightarrow K^+ \eta(\eta')$ 791 fb⁻¹

Branching fraction ratio DCS/SCS:

 $\mathcal{B}(D^+ \to K^+ \eta) / \mathcal{B}(D^+ \to \pi^+ \eta) = (3.06 \pm 0.43 \pm 0.14)\%$ $\mathcal{B}(D^+ \to K^+ \eta') / \mathcal{B}(D^+ \to \pi^+ \eta') = (3.77 \pm 0.39 \pm 0.10)\%$

- Suppressed compared to naive expectation of $\tan^2 \theta_C = 5.35 \times 10^{-2}$
- Branching fractions:

Belle CLEO SU(3) decay $D^+ \rightarrow K^+ \eta$ (1.08 ± 0.17) × 10⁻⁴ < 1.3 × 10⁻⁴ 1.06 × 10⁻⁴ $D^+ \to K^+ \eta'$ (1.76 ± 0.22) × 10⁻⁴ < 1.9 × 10⁻⁴ 1.16×10^{-4}

• $K^+\eta$ in agreement with SU(3) based expectation, $K^+\eta'$ is larger (almost 3σ)

13 / 15

- We searched for CPV in decays $D^+_{(s)} \rightarrow \phi \pi^+$, $D^0 \rightarrow K^0_s \pi^0, K^0_s \eta, K^0_s \eta'$ and $D^+ \rightarrow \pi^+ \eta, \pi^+ \eta'$ with sensitivities of 0.2% - 1% in A_{CP} .
- We found no evidence for either direct or indirect CPV in these decays
- We observed for the first time the DCS decays $D^+ \to K^+ \eta$ and $D^+ \to K^+ \eta'$
- Both are found to be suppressed compared to the naive expectation of $\tan^2 \theta_C$.
- While $D^+ \to K^+ \eta$ is in agreement with the SU(3) based expectation, the $D^+ \to K^+ \eta'$ is measured to be larger.

🚰 Backup slide

- $A_{\epsilon}^{KK} \neq 0$ (but small)
 - $\bullet\,$ same-sign and opposite-sign kaon momentum distributions differ due to interference of ϕ with other intermediate states
 - Easy to show:

$$A_{\epsilon}^{KK} = \int (P_1(x) - P_2(x)) A_{\epsilon}^K(x) dx, \quad x \equiv (p_K, \cos \theta_K)$$

• $P_1(x)$, $P_2(x)$ normalized distributions of same- and opposite-sign K• A_{ϵ}^K kaon detection asymmetry, measured with $D^0 \to K^-\pi^+$ and $D_s^+ \to \phi \pi^+$

