B_s^0 Decays at Belle

Remi Louvot

remi.louvot@epfl.ch

International Europhysics Conference on High Energy Physics Grenoble 21–27 July 2011

 B_s^0 Decays at Belle

EPS-HEP 2011 1 / 13

The Belle Experiment

EM calorim

 $CsI(Tl) = 16X_0$

8.2 GeV e

The Belle detector

- e⁺e⁻ collisions
- Located at KEK B factory (Tsukuba, Japan)
- Large-solid-angle ($\sim 92\%$)
- Efficient particle ID $(p, \pi^{\pm}, K^{\pm}, \gamma, \mu, e, K_{I}^{0})$
- World luminosity record

$$L_{\rm peak} = 2.11 \cdot 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$$

- Data taken at $\Upsilon(5S)$ ($\sqrt{s} = 10867 \pm 1$ MeV)
- The only large data sample at this energy:
 - Total sample: $| \sim 121\,{
 m fb}^{-1}$
- $\Upsilon(5S)$ is above $B_s^0 \overline{B_s^0}$ threshold Study of B^0_s meson possible !

EPS-HEP 2011

2 / 13

Remi Louvot (EPFL)

 B_c^0 Decays at Belle

Physics at $\Upsilon(5S)$: B_{c}^{0} Production

 $b\bar{b}$ cross section: subtraction of data taken below open-beauty threshold

Physics at $\Upsilon(5S)$: B_s^0 Production $f_{B} \ge (4.2 \pm 0.7) \%$ $non-B\overline{B}$ *udsc* continuum Belle (PRL 100, 112001 + arXiv:1103.3419) B^+ events >(Hadronic $\Upsilon(5S)$ events $\overline{f(B^{+/0})} = (73.7 \pm 6.0)\%$ Belle (PRD 81, 112003) (bb events $\sigma(bb) = (302 \pm 14) \text{ pb}$ Cleo (PRD 75, 012002) events +Belle (PRL 98, 052001) $f_s = (20.2 \pm 3.6)$ HFAG (arXiv:1010.1589)

• $f_s =$ fraction of B_s . Inclusive measurements:

$$\frac{1}{2} \underbrace{\mathcal{B}(\Upsilon(5S) \to D_s X)}_{\mathcal{B}(\Upsilon(5S) \to D_s X)} = f_s \times \underbrace{\mathcal{B}(B_s \to D_s X)}_{\mathcal{B}(B_s \to D_s X)} + (1 - f_s) \times \frac{1}{2} \underbrace{\mathcal{B}(\Upsilon(4S) \to D_s X)}_{\mathcal{B}(\Upsilon(4S) \to D_s X)}$$

(+ similar measurements with D^0 and ϕ rates)

- ▶ HFAG's average (with correlations, CLEO+Belle): $f_s = (20.2 \pm 3.6)\%$ [arXiv:1010.1589]
- 18% uncertainty, mainly due to model-dependent estimates.
- Dominant systematics for our branching fractions.
- Number of B_s^0 , in 121 fb⁻¹:

$$N_{B_{s}^{0}} = 2 \cdot L_{\text{int}} \cdot \sigma(b\bar{b}) \cdot f_{s} = 14.8 \pm 0.7 \pm 2.6(f_{s}) \cdot 10^{6}$$

Model-independent measurement of f_s with dileptons

- Alternative Model-independent f_s measurement with dileptons.
 proposed by R. Sia and S. Stone [PRD 74, 031501 (2006), 80, 039901(E) (2009)]
- ▶ Based on the difference between fast B⁰_s oscillation (χ_s = 50%), slow B⁰ oscillation (χ_d = 19%) and no B⁺ oscillation.
- Look at semi-leptonic decays $B \to I^+ \nu X$, $\bar{B} \to I^- \bar{\nu} X$
- Measure the number of same-sign and opposite-sign dileptons.

		Probabilities	
$B^{(*)}\overline{B}^{(*)}(X)$ events	100%	$I^{+}I^{+}, I^{-}I^{-}$	$I^{+}I^{-}$
B^+B^-	46%	0%	100%
$B^0ar{B}^0~(C=-1)$	35%	19%	81%
$B^0ar{B}^0~(C=+1)$	11%	42%	58%
B^0B^-	4%	19%	81%
$B_s^{(*)} ar{B}_s^{(*)}$ events		50%	50%

• The ratio $f_s/f(B^{+/0})$ can be measured from the number of SS and OS lepton pairs.

Expected sensitivity: 5 – 10% relative error on f_s

[RL, O. Schneider and T. Aushev, Belle note 1140, http://lphe.epfl.ch/louvot/bnote_1140.pdf]

Remi Louvot (EPFL)

B_s^0 Decays at Belle

EPS-HEP 2011 4 / 13

Physics at $\Upsilon(5S)$: B_s^0 Reconstruction

• Full reconstruction of the B_s^0 . Observables: $(E_b^* = \sqrt{s}/2)$

- Beam-constrained mass: $M_{\rm bc} = \sqrt{E_{\rm b}^{*2} {p_{B_s}^{*}}^2}$
- Energy difference: $\Delta E = E_{B_s^0}^* E_b^*$
- ▶ 3 production modes: $\Upsilon(5S) \rightarrow B_s^* \overline{B}_s^*, \ \Upsilon(5S) \rightarrow B_s^* \overline{B}_s^0 \text{ and } \Upsilon(5S) \rightarrow B_s^0 \overline{B}_s^0.$
- $B_s^* \to B_s^0 \gamma$ cannot be reconstructed (γ too soft)
- ► In the $(M_{\rm bc}, \Delta E)$ plane, B_s^0 candidates are in 3 signal regions

A "standard candle": $B_s^0 \rightarrow D_s^- \pi^+$

RL et al. (Belle) Phys. Rev. Lett. 102, 021801 (2009)

$$\mathcal{B}(B_s^0 \to D_s^- \pi^+) = \left(3.67^{+0.35}_{-0.33}(\mathrm{stat.})^{+0.43}_{-0.42}(\mathrm{syst.}) \pm 0.49(f_s)\right) \times 10^{-3}$$

▶ 18% systematics, f_s limits the precision for all B_s^0 branching fraction.

Remi Louvot (EPFL)

EPS-HEP 2011 6 / 13

Observation of $\bar{B_s^0} \rightarrow \Lambda_c^+ \pi^- \bar{\Lambda}$

Presented for the first time

- baryonic multi-body B decays tends to have larger BF than 2-body decays
- three-body baryonic B decays exhibit near-threshold baryon-antibaryon mass peak.
- ▶ $\bar{B_s^0} \to \Lambda_c^+ \pi^- \bar{\Lambda}$ is the counterpart of the already-observed $B^- \to \Lambda_c^+ \pi^- \bar{p}$
- ► Full reconstruction of $\bar{B_s^0} \to \Lambda_c^+ \pi^- \bar{\Lambda}$, $\Lambda_c^+ \to p K^- \pi^+$, $\bar{\Lambda} \to \bar{p} \pi^+$
- fit of the Λ_c^+ and $\bar{\Lambda}$ vertices
- $M(\Lambda_c^+)$ required to be within $10 \text{MeV}/c^2$ from the PDG value.
- $M(\bar{\Lambda})$ required to be within $4 \text{MeV}/c^2$ from the PDG value.
- continuum rejected with $R_2 < 0.5$ and cos(thrust angle) < 0.85
- 2D binned fit on $M_{\rm bc}$ and ΔE .

EPS-HEP 2011

7 / 13

Observation of $\bar{B_s^0} \to \Lambda_c^+ \pi^- \bar{\Lambda}$

Presented for the first time

24±7 signal events (5.0σ stat. significance incl. systematics)

First Observation of a baryonic B_s^0 decay!

► $\mathcal{B}(\bar{B_s^0} \to \Lambda_c^+ \pi^- \bar{\Lambda}) = (4.8 \pm 1.4 (\text{stat.}) \pm 0.9 (\text{syst.}) \pm 1.3 (\Lambda_c^+)) \times 10^{-4}$

- ▶ Comparable with B^- partner: PDG value $\mathcal{B}(B^- \to \Lambda_c^+ \pi^- \bar{p}) = (2.8 \pm 0.8) \times 10^{-4}$
- ▶ Plans: Add more Λ_c^+ modes ($\rightarrow \Lambda \pi^+, \rightarrow pK_S^0$, etc.) & extract $M(\Lambda_c \overline{\Lambda})$ distribution

Search for CP-eigenstate B_s^0 Decays

- ▶ B_s^0 CP-eigenstate are important for CKM-related measurements.
- $b \rightarrow c\bar{c}s$ transition are small in the SM \longrightarrow NP may be sizeable

Ball & Fleischer, Phys. Lett. B 475, 111 (2000)

$$B_s^0 \to J/\psi \, \eta^{(')}, \ B_s^0 \to J/\psi \, f_0, \ B_s^0 \to D_s^{(*)+} D_s^{(*)-}, \ B_s^0 \to J/\psi \, \phi, \ \dots$$

► $B_s^0 \to J/\psi f_0$ is a CP-odd mode with a final state with only 4 charged particles ► expectations: $\mathcal{B}(B_s^0 \to J/\psi f_0; f_0 \to \pi^+\pi^-) \approx (1.3 - 2.7) \times 10^{-4}$

[RL PoS(FPCP2010)015])

• Our analysis of $B_s^0 \to J/\psi f_0$:

• $J/\psi
ightarrow e^+e^-$ or $\mu^+\mu^-$, $R_2 < 0.4$

▶ $B_s^0 \rightarrow J/\psi f_0, f_0 \rightarrow \pi^+\pi^-$ candidates with consistent J/ψ and $\pi^+\pi^-$ vertices. Best-candidate selection based on $M_{\rm bc}$. ($\Delta E, M_{\pi^+\pi^-}$) 2D fit in -0.1 GeV< $\Delta E < 0.2$ GeV and $M_{\pi^+\pi^-} < 1.8$ GeV/ c^2

- Two f_0 resonances included in the fit: $f_0(980)$ and $f_0(1370)$
- includes backgrounds from continuum and other J/ψ modes.

• Observation of 63^{+16}_{-10} $B_s^0 \rightarrow J/\psi f_0(980)$ events (8.4 σ incl. syst.)

First evidence for $19^{+6}_{-8} B^0_s \rightarrow J/\psi f_0(1370)$ events (4.2 σ incl. syst.)

 $\begin{array}{l} \mathcal{B}(B_s^0 \to J/\psi f_0(980); f_0(980) \to \pi^+\pi^-) = [1.16^{+0.31}_{-0.19}(\mathrm{stat.})^{+0.15}_{-0.17}(\mathrm{syst.})^{+0.26}_{-0.18}(N(B_s^0))] \times 10^{-4} \\ \mathcal{B}(B_s^0 \to J/\psi f_0(1370); f_0(1370) \to \pi^+\pi^-) = [0.34^{+0.11}_{-0.14}(\mathrm{stat.})^{+0.03}_{-0.02}(\mathrm{syst.})^{+0.08}_{-0.05}(N(B_s^0))] \times 10^{-4} \end{array}$

< 口 > < 同 >

Comparable results with LHCb [PLB 698, 115], CDF [arXiv: 1106.3682] and D0 [conf. note 6152].

Measurement of sin $2\phi_1$ with $B-\pi$ Tagging

• $\phi_1(\beta)$ can be measured with the asymmetry $(x = \Delta m/\Gamma)$

$$A_{BB\pi} = rac{N_{BB\pi^-} - N_{BB\pi^+}}{N_{BB\pi^-} + N_{BB\pi^+}} = rac{\mathcal{S}x + \mathcal{A}}{1 + x^2}$$

Within the standard model, $\mathcal{A} = 0$, $\mathcal{S} = -\eta_{CP} \sin 2\phi_1$:

$$\sin 2\phi_1 = -\eta_{CP} \frac{1+x^2}{x} \times A_{BB\pi}$$

Remi Louvot (EPFL)

 B_c^0 Decays at Belle

EPS-HEP 2011 11 / 13

Measurement of sin $2\phi_1$ with B- π Tagging

• Result: 21.5 ± 6.8 signal events, $A_{BB\pi} = 0.28 \pm 0.28$ (stat.)

 $\sin 2\phi_1 = 0.57 \pm 0.58 (\text{stat.}) \pm 0.06 (\text{syst.})$

Clear lack of statistics, but it is possible to measure ϕ_1 with $B-\pi$ tagging! $\langle \Box \rangle \langle \overline{C} \rangle \langle$

Conclusion:

- ▶ Belle has recorded ~ 15 M of B_s^0 (and ~ 54 M of $B^{+/0}$) at $\Upsilon(5S)$ energy
- Several results using all the whole Belle $\Upsilon(5S)$ sample (121 /fb) are ready:
- Observation of $\bar{B}^0_s \to \Lambda^+_c \pi^- \bar{\Lambda}$

First baryonic B_s^0 decay!, $\mathcal{B}(B_s^0 \to \Lambda_c^+ \pi^- \bar{\Lambda}) = (4.8 \pm 1.4 \pm 0.9 \pm 1.3(\Lambda_c^+)) \cdot 10^{-4}$

• Observation of $B_s^0 \to J/\psi f_0(980)$ and Evidence for $B_s^0 \to J/\psi f_0(1370)$

[J. Li et al. (Belle collab.), Phys. Rev. Lett. 106, 121802]

• Measurement of ϕ_1 (β) using B- π tagging in $\Upsilon(5S) \rightarrow B^{(*)}B\pi^{\pm}$ events

It's possible!, but needs more statistics

- More to come this summer, stay tuned!
- ▶ Good B⁰_s prospects at Belle2/superB

Thank you.

13 / 13

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

EPS-HEP 2011

Remi Louvot (EPFL)

 B_s^0 Decays at Belle