Direct CP violation and Charmless B decays at Belle

Paoti Chang

National Taiwan University
EPS-HEP 2011
21-27 July, Grenoble, France

Introduction

- Charmless B decays provide a rich ground to search for new physics and understand B decay mechanisms.
- extract the angle ϕ_{3} / γ
- New physics in electroweak penguins

1. $\Delta A_{K \pi}=A_{C P}\left(K \pi^{0}\right)-A_{C P}(K \pi)$
2. Ratios of branching fractions, i.e. Rc, Rn

- Update on branching fractions and direct CP asymmetries for $B \rightarrow h h$ and ηh ($h=K$ or π) with the final dataset of $772 \mathrm{M} \overline{\mathrm{B}}$ pairs and improved tracking.

Analysis Strategy

- Distinguish charged K and π mesons using Belle PID Typical eff. is 84% (89%) for $K(\pi)$, fake rate is 7% (11\%)
- Identify K^{0} from $K_{S} \rightarrow \pi^{+} \pi^{-}, \pi^{0}$ via $\pi^{0} \rightarrow \gamma \gamma$ and η meson from $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- Identify B candidates with $\mathrm{M}_{\mathrm{bc}}\left(\mathrm{M}_{\mathrm{bc}}^{\prime}\right.$ for $\left.\gamma \gamma\right)$ and $\Delta \mathrm{E}$

Signal-background likelihood ratio

- Distinguish signals and continuum background using shape variables, which are combined into a variable called KSFW, as well as $\cos \theta_{\mathrm{B}}$ and ΔZ
- Form Sig. Bkg. likelihood ratio
 $R=\frac{L_{S}}{L_{S}+L_{B}}$
- cut at 0.2
- Define R'
$\mathrm{R}^{\prime}=\ln \left(\frac{\mathrm{R}-0.2}{1.0-\mathrm{R}}\right)$

Signal Extraction

- Perform $\mathrm{M}_{\mathrm{bc}}-\Delta \mathrm{E}-\mathrm{R}^{\prime}$ unbinned likelihood fit to extract signal yields and CP asymmetries.

$$
\begin{aligned}
\mathcal{L} & =e^{-\sum_{j} \frac{N_{j}}{} \times \prod_{i}\left(\sum_{j} N_{j} \mathcal{P}_{j}^{i}\right) \text { and }} \\
\mathcal{P}_{j}^{i} & =\frac{1}{2}\left[1-q^{i} \cdot \underline{A_{C P} j}\right] P_{j}\left(M_{\mathrm{bc}}^{i}, \Delta E^{i}, \mathcal{R}^{i}\right)
\end{aligned}
$$

- Simultaneous fit for the $h K^{ \pm}$and $h \pi^{ \pm}$modes.
- Rare B background PDFs are from large MC samples.
- Parameters of continuum PDFs are floated.

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{ \pm} \pi^{\mp}, \pi^{+} \pi^{-}$

$K^{ \pm} \pi^{\mp}$

- $B \rightarrow K \pi$
$\mathrm{N}=7527 \pm 127$
$\mathfrak{B}=(20.00 \pm 0.34 \pm 0.63) \times 10^{-6}$
$\mathrm{A}_{\text {CP }}=(-0.069 \pm 0.014 \pm 0.007)$
- B $\rightarrow \pi^{+} \pi^{-}$
$\mathrm{N}=2111 \pm 89$
$\mathfrak{B}=(5.04 \pm 0.21 \pm 0.19) \times 10^{-6}$

How the $A_{C P}(K \pi)$ central value changed since the last Belle measurement?

- $A_{C P}=(-0.069 \pm 0.014 \pm 0.007)$ for $772 \mathrm{M} \mathrm{B} \bar{B}$

$$
\begin{aligned}
\mathrm{A}_{\mathrm{CP}}= & (-0.094 \pm 0.018 \pm 0.008) \text { for } 535 \mathrm{M} \text { B } \overline{\mathrm{B}} \\
& \text { Nature } 452,332(2008)
\end{aligned}
$$

- The last data set with $237 \times 10^{6} \mathrm{BB}$ pairs has a central value closer to zero.
- Most of the dataset has been reprocessed with improved tracking.

$N_{B \bar{B}}\left(10^{6}\right)$			
$N_{\text {sig }}$	$A_{C P}$		
Old tracking	535	4097	-0.094 ± 0.018
New tracking	535	5066	
New tracking	237	2459	-0.041 ± 0.023
New tracking	772	7527	-0.069 ± 0.014

Consistent $\mathrm{A}_{\mathrm{CP}}(\mathrm{K} \pi)$ results

Belle: -0.069 $\pm 0.014 \pm 0.007$ This meeting BaBar: - $0.107 \pm 0.016_{-0.004}^{+0.006} \quad$ arXiv:0807.4226 CDF: -0.086 $\pm 0.023 \pm 0.009 \quad$ PRL 106, 181802 (2011) LHCb: -0.074 $\pm 0.033 \pm 0.008$ arXiv: 1106.1197

$$
\text { average: } A_{C P}(K \pi)=-0.085 \pm 0
$$

$\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \pi^{0}, \pi^{ \pm} \pi^{0}$

$\mathrm{K}^{ \pm} \pi^{0}$
$\pi^{ \pm} \pi^{0}$

- $\mathrm{K}^{ \pm} \pi^{0}$:

$$
\mathrm{N}=3731 \pm 92
$$

$$
\mathfrak{B}=(12.62 \pm 0.31 \pm 0.56) \times 10^{-6} \quad \mathscr{B}=(5.86 \pm 0.26 \pm 0.38) \times 10^{-6}
$$

$$
A_{C P}=+0.043 \pm 0.024 \pm 0.002 \quad A_{C P}=+0.025 \pm 0.043 \pm 0.007
$$

$\Delta A_{K \pi}=A_{C P}\left(K \pi^{0}\right)-A_{C P}(K \pi)$

Belle Nature paper:

$\Delta \mathrm{A}_{\mathrm{K} \pi}=+0.164 \pm 0.037 @ 4.4 \sigma$ Belle preliminary:
$\Delta \mathrm{A}_{\mathrm{K} \pi}=+0.112 \pm 0.028 @ 4 \sigma$
My world average:
$\Delta \mathrm{A}_{\mathrm{K} \pi}=+0.121 \pm 0.022$
$A_{c p}\left(K^{ \pm} \pi^{0}\right)=0.043 \pm 0.024 \pm 0.002$
$A_{c p}\left(K^{ \pm} \pi^{\mp}\right)=-0.069 \pm 0.014 \pm 0.007$

$B^{ \pm} \rightarrow K^{0} \pi^{ \pm}, K^{0} K^{ \pm}$

$K^{0} \pi^{ \pm}$
$K^{0} K^{ \pm}$

- K ${ }^{0} \pi^{ \pm}$:

$$
\mathrm{N}=3229 \pm 71
$$

$$
\mathfrak{B}=\left(23.97_{-0.52}^{+0.53} \pm 0.69\right) \times 10^{-6} \quad \mathfrak{B}=\left(1.11_{-0.18}^{+0.19} \pm 0.05\right) \times 10^{-6}
$$

$$
A_{C P}=-0.014 \pm 0.021 \pm 0.006 \quad A_{C P}=+0.017 \pm 0.168 \pm 0.002
$$

$B^{0} \rightarrow K^{0} \overline{K^{0}}, K^{0} \pi^{0}$

Ratios of Branching Fractions

Modes	Belle 2007	Belle 2011
$2 \Gamma\left(K^{+} \pi^{0}\right) / \Gamma\left(K^{0} \pi^{+}\right)$	$1.08 \pm 0.06 \pm 0.08$	$1.05 \pm 0.03 \pm 0.05 \mathrm{Rc}$
$\Gamma\left(K^{+} \pi^{-}\right) / 2 \Gamma\left(K^{0} \pi^{0}\right)$	$1.08 \pm 0.08 \pm 0.08$	$1.04 \pm 0.05 \pm 0.06 \mathrm{Rn}$
$\Gamma\left(K^{+} \pi^{-}\right) / \Gamma\left(K^{0} \pi^{+}\right)$	$0.94 \pm 0.04 \pm 0.05$	$0.90 \pm 0.03 \pm 0.03$
$\Gamma\left(\pi^{+} \pi^{-}\right) / \Gamma\left(K^{+} \pi^{-}\right)$	$0.26 \pm 0.01 \pm 0.01$	$0.25 \pm 0.01 \pm 0.01$
$\Gamma\left(\pi^{+} \pi^{-}\right) / 2 \Gamma\left(\pi^{+} \pi^{0}\right)$	$0.42 \pm 0.03 \pm 0.02$	$0.46 \pm 0.03 \pm 0.03$
$\Gamma\left(\pi^{+} \pi^{0}\right) / \Gamma\left(K^{0} \pi^{0}\right)$	$0.66 \pm 0.07 \pm 0.04$	$0.56 \pm 0.04 \pm 0.03$
$2 \Gamma\left(\pi^{+} \pi^{0}\right) / \Gamma\left(K^{0} \pi^{+}\right)$	$0.57 \pm 0.04 \pm 0.04$	$0.49 \pm 0.02 \pm 0.03$

Consistent with SM predictions with different approaches.
H.-n. Li et. al, Phys. Rev.D 72, 114005 (2005) ; T. Yoshikawa, Phys. Rev. D 68, 054023 (2003); M. Gronau and J. L. Rosner, Phys. Lett. B 572, 43 (2003)

$$
\begin{aligned}
& \text { symmetry: } R_{C}=1.15 \pm 0.05, R_{n}=1.12 \pm 0.05 \\
& 3 \text { uras et. al, EPJC } 45,701(2006)
\end{aligned}
$$

Preliminary

Evidence of Direct CPV in $\mathrm{B}^{ \pm} \rightarrow \eta \mathrm{K}^{ \pm}$

 $\mathscr{B}=(2.12+0.22 \pm \pm 0.11) \times 10^{-6}$$A_{C P}=-0.38 \pm 0.10 \pm 0.01$ @3.86
Consistent results btw $\gamma \gamma$ and $\pi \pi \pi^{0}$ modes

- Observe large negative A_{CP}. Consistent btw BaBar and Belle
- BaBar 2009 (467 M):

$$
\begin{aligned}
& \mathscr{B}=\left(2.94^{+0.39} \pm \pm 0.21\right) \times 10^{-6} \\
& A_{\mathrm{CP}}=-0.36 \pm 0.11 \pm 0.03 @ 3.3 \sigma \\
&- \text { Belle } 2007(535 \mathrm{M}): \\
& \mathscr{B}=(1.9 \pm 0.3 \pm 0.2 \mathrm{O}) \times 10^{-6} \\
& \mathrm{~A}_{\mathrm{CP}}=-0.39 \pm 0.16 \pm 0.03 @ 2.4 \sigma
\end{aligned}
$$

Preliminary

Evidence of Direct CPV in $\mathrm{B}^{ \pm} \rightarrow \eta \pi^{ \pm}$

$$
\begin{aligned}
& \mathscr{B}=(4.07 \pm 0.26 \pm 0.21) \times 10^{-6} \\
& A_{C P}=-0.19 \pm 0.06 \pm 0.01 @ 3.0 \sigma
\end{aligned}
$$

Consistent results btw $\gamma \gamma$ and $\pi \pi \pi^{0}$ modes

- Observe large negative A_{CP}.

Tension between previous BaBar and Belle results.

- BaBar 2009 (467 M):

$$
\begin{aligned}
& \mathfrak{B}=(4.00 \pm 0.40 \pm 0.24) \times 10^{-6} \\
& \mathrm{~A}_{\mathrm{CP}}=-0.03 \pm 0.09 \pm 0.03 @ 0.3 \sigma
\end{aligned}
$$

- Belle 2007 (535 M):

$$
\begin{aligned}
& \mathfrak{B}=(4.2 \pm 0.4 \pm 0.2) \times 10^{-6} \\
& A_{\mathrm{CP}}=-0.23 \pm 0.09 \pm 0.02 @ 2.5 \sigma
\end{aligned}
$$

Preliminary

Observation of $\mathrm{B}^{0} \rightarrow \eta \mathrm{~K}^{0}$

$$
\begin{aligned}
& \mathscr{B}=\left(1.322_{-0.29}^{+0.33} \pm 0.07\right) \times 10^{-6} @ 5.4 \sigma \\
& \text { Both } \gamma \gamma \text { and } \pi \pi \pi^{0} \text { modes have } 4 \sigma \text { excess. }
\end{aligned}
$$

BaBar: $\left(1.15_{-0.38}^{+0.43} \pm 0.09\right) \times 10^{-6} @ 3.5 \sigma$ PRD 80, 112002 (2009) Old Belle: $(1.1 \pm 0.4 \pm 0.1) \times 10^{-6} @ 2.9 \sigma$ PRD 74, 0711004 (2007)

Summary 1

- Belle updated branching fractions and direct A_{CP} with the final data sample for $\mathrm{B} \rightarrow \mathrm{hh}$ and $\eta \mathrm{h}$.
- Improve precision due to statistics, new analysis method and better understanding of our detector.
- The central value of $\mathrm{A}_{\mathrm{CP}}(\mathrm{K} \pi)$ has decreased slightly but is consistent with other experimental results.
- $\Delta \mathrm{A}(\mathrm{K} \pi)$ remains large.

Belle:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{CP}}(\mathrm{~K} \pi)=-0.069 \pm 0.014 \pm 0.007 \\
& \triangle \mathrm{~A}(\mathrm{~K} \pi)=+0.112 \pm 0.028
\end{aligned}
$$

My world average:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{CP}}(\mathrm{~K} \pi)=-0.085 \pm 0.010 \\
& \triangle \mathrm{~A}(\mathrm{~K} \pi)=+0.121 \pm 0.022
\end{aligned}
$$

Summary 2

- No CPV asymmetries were observed for $\mathrm{K}^{0} h^{ \pm}$and $\pi \pm \pi^{0}$, as expected with a single dominant diagram.
- Rc and Rn are consistent with theoretical prediction with various approaches.
- Find evidence of direct CPV for $\mathrm{B} \rightarrow \eta \mathrm{K}^{ \pm}$and $\eta \pi^{ \pm}$, while BaBar's $A_{C P}\left(\eta \pi^{ \pm}\right)$is consistent with zero.
- First observation of $\mathrm{B} \rightarrow \eta \mathrm{K}^{0} @ 5.4 \sigma$.

BACK UP

Belle Detector

Summary table of $B \rightarrow \eta$ h

Mode	$\epsilon_{\text {eff }}(\%)$	Yield	$\Sigma(\mathcal{B})$	$\mathcal{B}\left(10^{-6}\right)$	$\Sigma\left(A_{C P}\right)$	$A_{C P}$
$\bar{B}^{ \pm} \rightarrow \eta K^{ \pm}$			13.2	$2.12_{-0.22}^{+0.23} \pm 0.11$	3.8	$-0.38 \pm 0.11 \pm 0.01$
$\eta_{\gamma \gamma} K^{ \pm}$	13.25	$201.88_{-26.48}^{+27.08}$	10.2	$2.07 \pm 0.27 \pm 0.10$	2.9	$-0.36 \pm 0.13 \pm 0.01$
$\eta_{3 \pi} K^{ \pm}$	4.94	$80.17_{-13.85}^{+14.92}$	8.6	$2.29_{-0.40}^{+0.43} \pm 0.15$	2.4	$-0.42 \pm 0.18 \pm 0.01$
$B^{ \pm} \rightarrow \eta \pi^{ \pm}$			22.4	$4.07 \pm 0.26 \pm 0.21$	3.0	$-0.19 \pm 0.06 \pm 0.01$
$\eta_{\gamma \gamma} \pi^{ \pm}$	15.34	$480.61{ }_{-35.97}^{+35.06}$	19.0	$4.24_{-0.32}^{+0.31} \pm 0.19$	1.8	$-0.14 \pm 0.08 \pm 0.01$
$\eta_{3 \pi} \pi^{ \pm}$	5.44	$138.55_{-17.47}^{+18.50}$	12.2	$3.63 \pm 0.49 \pm 0.25$	2.5	$-0.31_{-0.12}^{+0.13} \pm 0.01$
$B^{0} \rightarrow \eta K^{0}$			5.4	$1.27_{-0.29}^{+0.33} \pm 0.08$		
$\eta_{\gamma \gamma} K^{0}$	4.15	$38.03_{-11.45}^{+12.62}$	4.0	$1.18_{-0.35}^{+0.39} \pm 0.06$		
$\eta_{3 \pi} K^{0}$	1.48	$16.23_{-5.43}^{+6.45}$	4.1	$1.48_{-0.49}^{+0.59} \pm 0.10$		

Summary Table for B \rightarrow hh

	yield	Total $\epsilon(\%)$	$\mathcal{B} \mathcal{R}\left(\times 10^{-6}\right)$	$\mathcal{A}_{c p}$
$K^{ \pm} \pi^{\mp}$	7525_{-126}^{+127}	48.82	$20.00 \pm 0.34 \pm 0.63$	$-0.069 \pm 0.014 \pm 0.007$
$\pi^{ \pm} \pi^{\mp}$	2111_{-88}^{+89}	54.79	$5.04 \pm 0.21_{-0.19}^{+0.18}$	
$K^{ \pm} \pi^{0}$	3731_{-91}^{+92}	38.30	$12.62 \pm 0.31 \pm 0.56$	$+0.043 \pm 0.024 \pm 0.002$
$\pi^{ \pm} \pi^{0}$	1846_{-81}^{+82}	40.80	$5.86 \pm 0.26 \pm 0.38$	$+0.025 \pm 0.043 \pm 0.007$
$K^{0} K^{ \pm}$	134_{-22}^{+23}	15.64	$1.11_{-0.18}^{+0.19} \pm 0.05$	$+0.017 \pm 0.168 \pm 0.002$
$K^{0} \pi^{ \pm}$	3229_{-70}^{+71}	17.46	$23.97_{-0.52}^{+0.53} \pm 0.69$	$-0.014 \pm 0.021 \pm 0.006$
$K^{0} \bar{K}^{0}$	103_{-14}^{+15}	10.61	$1.26_{-0.18}^{+0.19} \pm 0.06$	
$K^{0} \pi^{0}$	960_{-45}^{++46}	12.87	$9.66_{-0.45}^{+0.46} \pm 0.49$	

