

Direct CP violation and Charmless B decays at Belle

Paoti Chang

National Taiwan University EPS-HEP 2011 21-27 July, Grenoble, France

Introduction

- Charmless B decays provide a rich ground to search for new physics and understand B decay mechanisms.
 - extract the angle ϕ_3/γ
 - New physics in electroweak penguins
 - 1. $\Delta A_{K\pi} = A_{CP}(K\pi^0) A_{CP}(K\pi)$
 - 2. Ratios of branching fractions, i.e. Rc, Rn
- Update on branching fractions and direct CP asymmetries for $B \rightarrow hh$ and ηh (h= K or π) with the final dataset of 772 M BB pairs and improved tracking.

Analysis Strategy

- Distinguish charged K and π mesons using Belle PID
 Typical eff. is 84% (89%) for K(π), fake rate is 7% (11%)
- Identify K⁰ from $K_S \rightarrow \pi^+\pi^-, \pi^0$ via $\pi^0 \rightarrow \gamma\gamma$ and η meson from $\eta \rightarrow \gamma\gamma$ and $\eta \rightarrow \pi^+\pi^-\pi^0$
- Identify B candidates with M_{bc} (M'_{bc} for $\gamma\gamma$) and ΔE

 $\Delta E = E_B - E_{beam}$

 $M_{bc} = \sqrt{E_{beam}^2 - |\vec{P}_B|^2}$

Signal-background likelihood ratio

• Distinguish signals and continuum background using shape variables, which are combined into a variable called KSFW, as well as $\cos\theta_{\rm B}$ and ΔZ

• Form Sig. Bkg. likelihood ratio

DCPV and charmless B decays at Belle

Signal Extraction

• Perform M_{bc} - Δ E-R' unbinned likelihood fit to extract signal yields and CP asymmetries.

$$\mathcal{L} = e^{-\sum_{j} \underline{N_{j}}} \times \prod_{i} (\sum_{j} N_{j} \mathcal{P}_{j}^{i}) \text{ and}$$
$$\mathcal{P}_{j}^{i} = \frac{1}{2} [1 - q^{i} \cdot \underline{A_{CPj}}] P_{j}(M_{bc}^{i}, \Delta E^{i}, \mathcal{R'}^{i})$$

- Simultaneous fit for the hK[±] and h π^{\pm} modes.
- Rare B background PDFs are from large MC samples.
- Parameters of continuum PDFs are floated.

preliminary

 $B^{0} \rightarrow K^{\pm} \pi^{\mp}, \pi^{+} \pi^{-}$

2011/7/21

DCPV and charmless B decays at Belle

How the $A_{CP}(K\pi)$ central value changed since the last Belle measurement?

- A_{CP}= (-0.069±0.014 ±0.007) for 772 M BB A_{CP}= (-0.094±0.018 ±0.008) for 535 M BB Nature 452, 332 (2008)
- The last data set with 237 x10⁶ BB pairs has a central value closer to zero.
- Most of the dataset has been reprocessed with improved tracking.

	$N_{B\bar{B}}~(10^6)$	$N_{\rm sig}$	A_{CP}
Old tracking	535	4097	-0.094 ± 0.018
New tracking	535	5066	
New tracking	237	2459	-0.041 ± 0.023
New tracking	772	7527	-0.069 ± 0.014

Consistent $A_{CP}(K\pi)$ results

Belle: $-0.069 \pm 0.014 \pm 0.007$ BaBar: $-0.107 \pm 0.016 \stackrel{+0.006}{_{-0.004}}$ CDF: $-0.086 \pm 0.023 \pm 0.009$ LHCb: $-0.074 \pm 0.033 \pm 0.008$

This meeting arXiv:0807.4226 PRL 106, 181802 (2011) arXiv: 1106.1197

My average: $A_{CP}(K\pi) = -0.085 \pm 0.010$

Preliminary $B^{\pm} \rightarrow K^{\pm} \pi^{0}$, $\pi^{\pm} \pi^{0}$

• $K^{\pm} \pi^{0}$: N = 3731 ± 92 $\mathcal{B} = (12.62 \pm 0.31 \pm 0.56) \times 10^{-6}$ $A_{CP} = +0.043 \pm 0.024 \pm 0.002$ • $\pi^{\pm} \pi^{0}$: N = 1 $\mathcal{B} = (5)$ $A_{CP} = -6$

 $N = 1846 \pm 82$ $\mathcal{B} = (5.86 \pm 0.26 \pm 0.38) \times 10^{-6}$ $A_{CP} = +0.025 \pm 0.043 \pm 0.007$

preliminary $\Delta A_{K\pi} = A_{CP}(K\pi^0) - A_{CP}(K\pi)$

Belle Nature paper: $\Delta A_{K\pi} = +0.164 \pm 0.037 \text{ }@4.4\sigma$

Belle preliminary: $\Delta A_{K\pi} = +0.112 \pm 0.028 \text{ @}4\sigma$

My world average: $\Delta A_{K\pi} = +0.121 \pm 0.022 @5.5\sigma$ $A_{cp}(K^{\pm}\pi^{0}) = +0.043 \pm 0.024 \pm 0.002$ $A_{cp}(K^{\pm}\pi^{\mp}) = -0.069 \pm 0.014 \pm 0.007$

 $B^{\pm} \rightarrow K^{0} \pi^{\pm}$, $K^{0} K^{\pm}$

• K ⁰K[±] : • $K^{0}\pi^{\pm}$: $N = 134 \pm 23$ $N = 3229 \pm 71$ $\mathbf{B} = (23.97^{+0.53}_{-0.52} \pm 0.69) \times 10^{-6}$ $\mathbf{B} = (1.11^{+0.19}_{-0.18} \pm 0.05) \times 10^{-6}$ $A_{CP} = -0.014 \pm 0.021 \pm 0.006$ $A_{CP} = +0.017 \pm 0.168 \pm 0.002$

DCPV and charmless B decays at Belle

Preliminary

 $B^0 \rightarrow K^0 \overline{K^0}$, $K^0 \pi^0$

DCPV and charmless B decays at Belle

Prem Ratios of Branching Fractions

Modes	Belle 2007	Belle 2011	
$2\Gamma(K^+\pi^0)/\Gamma(K^0\pi^+)$	$1.08 \pm 0.06 \pm 0.08$	$1.05 \pm 0.03 \pm 0.05$	Ro
$\Gamma(K^+\pi^-)/2\Gamma(K^0\pi^0)$	$1.08 \pm 0.08 \pm 0.08$	$1.04 \pm 0.05 \pm 0.06$	Rr
$\Gamma(K^+\pi^-)/\Gamma(K^0\pi^+)$	$0.94 \pm 0.04 \pm 0.05$	$0.90 \pm 0.03 \pm 0.03$	
$\Gamma(\pi^+\pi^-)/\Gamma(K^+\pi^-)$	$0.26 \pm 0.01 \pm 0.01$	$0.25 \pm 0.01 \pm 0.01$	
$\Gamma(\pi^+\pi^-)/2\Gamma(\pi^+\pi^0)$	$0.42 \pm 0.03 \pm 0.02$	$0.46 \pm 0.03 \pm 0.03$	
$\Gamma(\pi^+\pi^0)/\Gamma(K^0\pi^0)$	$0.66 \pm 0.07 \pm 0.04$	$0.56 \pm 0.04 \pm 0.03$	
$2\Gamma(\pi^+\pi^0)/\Gamma(K^0\pi^+)$	$0.57 \pm 0.04 \pm 0.04$	$0.49 \pm 0.02 \pm 0.03$	

Consistent with SM predictions with different approaches. H.-n. Li et. al, Phys. Rev.D 72, 114005 (2005) ; T. Yoshikawa, Phys. Rev. D 68, 054023 (2003); M. Gronau and J. L. Rosner, Phys. Lett. B 572, 43 (2003) SU(3) symmetry: $R_c = 1.15 \pm 0.05$, $R_n = 1.12 \pm 0.05$ Buras et. al, EPJC 45, 701 (2006)

Preliminary Evidence of Direct CPV in $B^{\pm} \rightarrow \eta K^{\pm}$ $\mathscr{B} = (2.12 \stackrel{+0.23}{_{-0.22}} \pm 0.11) \times 10^{-6}$ $A_{CP} = -0.38 \pm 0.10 \pm 0.01 @ 3.8\sigma$

Consistent results btw $\gamma\gamma$ and $\pi\pi\pi^0$ modes

Observe large negative A_{CP}.
 Consistent btw BaBar and Belle

• BaBar 2009 (467 M): $\mathscr{B} = (2.94_{-0.34}^{+0.39} \pm 0.21) \times 10^{-6}$ $A_{CP} = -0.36 \pm 0.11 \pm 0.03 @ 3.3\sigma$ • Belle 2007 (535 M): $\mathscr{B} = (1.9 \pm 0.3 \pm 0.2) \times 10^{-6}$ $A_{CP} = -0.39 \pm 0.16 \pm 0.03 @ 2.4\sigma$

Preliminary Evidence of Direct CPV in $B^{\pm} \rightarrow \eta \pi^{\pm}$ $\mathscr{B} = (4.07 \pm 0.26 \pm 0.21) \times 10^{-6}$ $A_{CP} = -0.19 \pm 0.06 \pm 0.01 @ 3.0\sigma$ Consistent results btw $\gamma\gamma$ and $\pi\pi\pi^{0}$ modes

 Observe large negative A_{CP} **Tension between previous BaBar** and Belle results. • BaBar 2009 (467 M): $\mathcal{B} = (4.00 \pm 0.40 \pm 0.24) \times 10^{-6}$ $A_{CP} = -0.03 \pm 0.09 \pm 0.03 @0.3\sigma$ • Belle 2007 (535 M): $\mathcal{B} = (4.2 \pm 0.4 \pm 0.2) \times 10^{-6}$ $A_{CP} = -0.23 \pm 0.09 \pm 0.02 @2.5\sigma$

DCPV and charmless B decays at Belle

Preliminary Observation of $B^0 \rightarrow \eta K^0$

 $\mathcal{B} = (1.32 \ ^{+0.33}_{-0.29} \ \pm 0.07) \times 10^{-6} \ @5.4\sigma$ Both $\gamma\gamma$ and $\pi\pi\pi^0$ modes have 4σ excess.

BaBar: $(1.15^{+0.43}_{-0.38} \pm 0.09) \times 10^{-6}$ @3.5 σ PRD 80, 112002 (2009) Old Belle: $(1.1 \pm 0.4 \pm 0.1) \times 10^{-6}$ @2.9 σ PRD 74, 0711004 (2007)

Summary 1

- Belle updated branching fractions and direct A_{CP} with the final data sample for $B \rightarrow hh$ and ηh .
- Improve precision due to statistics, new analysis method and better understanding of our detector.
- The central value of $A_{CP}(K\pi)$ has decreased slightly but is consistent with other experimental results.
- $\Delta A(K\pi)$ remains large.

Belle:

 $A_{CP}(K\pi) = -0.069 \pm 0.014 \pm 0.007$ $\Delta A(K\pi) = +0.112 \pm 0.028$ My world average: $A_{CP}(K\pi) = -0.085 \pm 0.010$ $\Delta A(K\pi) = +0.121 \pm 0.022$

Summary 2

- No CPV asymmetries were observed for K^0h^{\pm} and $\pi^{\pm}\pi^0$, as expected with a single dominant diagram.
- Rc and Rn are consistent with theoretical prediction with various approaches.
- Find evidence of direct CPV for $B \rightarrow \eta K^{\pm}$ and $\eta \pi^{\pm}$, while BaBar's $A_{CP}(\eta \pi^{\pm})$ is consistent with zero.
- First observation of $B \rightarrow \eta K^0$ @5.4 σ .

BACK UP

Belle Detector

Summary table of $B \rightarrow \eta h$

Mode	ϵ_{eff} (%)	Yield	$\Sigma(\mathcal{B})$	$\mathcal{B}(10^{-6})$	$\Sigma(A_{CP})$	A_{CP}
$B^{\pm} \to \eta K^{\pm}$			13.2	$2.12^{+0.23}_{-0.22} \pm 0.11$	3.8	$-0.38 \pm 0.11 \pm 0.01$
$\eta_{\gamma\gamma}K^{\pm}$	13.25	$201.88^{+27.08}_{-26.48}$	10.2	$2.07 \pm 0.27 \pm 0.10$	2.9	$-0.36 \pm 0.13 \pm 0.01$
$\eta_{3\pi}K^{\pm}$	4.94	$80.17^{+14.92}_{-13.85}$	8.6	$2.29^{+0.43}_{-0.40} \pm 0.15$	2.4	$-0.42 \pm 0.18 \pm 0.01$
$B^{\pm} \to \eta \pi^{\pm}$			22.4	$4.07 \pm 0.26 \pm 0.21$	3.0	$-0.19 \pm 0.06 \pm 0.01$
$\eta_{\gamma\gamma}\pi^{\pm}$	15.34	$480.61_{-35.97}^{+35.06}$	19.0	$4.24^{+0.31}_{-0.32} \pm 0.19$	1.8	$-0.14 \pm 0.08 \pm 0.01$
$\eta_{3\pi}\pi^{\pm}$	5.44	$138.55^{+18.50}_{-17.47}$	12.2	$3.63 \pm 0.49 \pm 0.25$	2.5	$-0.31^{+0.13}_{-0.12}\pm0.01$
$B^0 \to \eta K^0$			5.4	$1.27^{+0.33}_{-0.29} \pm 0.08$		
$\eta_{\gamma\gamma}K^0$	4.15	$38.03^{+12.62}_{-11.45}$	4.0	$1.18^{+0.39}_{-0.35} \pm 0.06$		
$\eta_{3\pi}K^0$	1.48	$16.23^{+6.45}_{-5.43}$	4.1	$1.48^{+0.59}_{-0.49}\pm0.10$		

Summary Table for $B \rightarrow hh$

	yield	Total $\epsilon(\%)$	$\mathcal{BR}(imes 10^{-6})$	\mathcal{A}_{cp}
$K^{\pm}\pi^{\mp}$	7525^{+127}_{-126}	48.82	$20.00 \pm 0.34 \pm 0.63$	$-0.069 \pm 0.014 \pm 0.007$
$\pi^{\pm}\pi^{\mp}$	2111^{+89}_{-88}	54.79	$5.04 \pm 0.21^{+0.18}_{-0.19}$	
$K^{\pm}\pi^{0}$	3731^{+92}_{-91}	38.30	$12.62 \pm 0.31 \pm 0.56$	$+0.043 \pm 0.024 \pm 0.002$
$\pi^{\pm}\pi^{0}$	1846^{+82}_{-81}	40.80	$5.86 \pm 0.26 \pm 0.38$	$+0.025\pm0.043\pm0.007$
$K^0 K^{\pm}$	134^{+23}_{-22}	15.64	$1.11^{+0.19}_{-0.18} \pm 0.05$	$+0.017\pm0.168\pm0.002$
$K^0\pi^{\pm}$	3229_{-70}^{+71}	17.46	$23.97^{+0.53}_{-0.52} \pm 0.69$	$-0.014 \pm 0.021 \pm 0.006$
$K^0 \overline{K}^0$	103^{+15}_{-14}	10.61	$1.26^{+0.19}_{-0.18} \pm 0.06$	
$K^0\pi^0$	960^{+46}_{-45}	12.87	$9.66^{+0.46}_{-0.45} \pm 0.49$	