Measurement of the cosmic ray energy spectrum above 1 eev at the Pierre Auger Observatory

$\begin{array}{c} \mbox{Corinne Bérat} \ ^{1)} \\ \mbox{for the Pierre Auger Collaboration} \ ^{2)} \end{array}$

1) Laboratoire de Physique Subatomique et de Cosmologie, 53 Ave des Martyrs, 38000 Grenoble, France 2) Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malargüe, Argentina

21 july 2011

Ultra High Energy Cosmic Rays (UHECR)

- most energetic source of elementary particles available to scientists macroscopic energies $E > 1 \text{ EeV} (10^{18} \text{ eV})$
- but very low flux !
- \Rightarrow Identifying them and their origin: the aim of UHECR study

Extensive air shower

- UHECR produce large shower of particles in Earth's atmosphere (calorimeter)
- cosmic particle characteristics obtained from the measured properties of extensive air showers

Pierre Auger Observatory: to study the cosmic rays above 1 EeV

Hybrid detector \rightarrow capability to measure:

- longitudinal development in atmosphere with fluorescence light telescopes
- lateral spread at ground level with ground based particle detectors

The largest cosmic ray detector in operation

Data taking started in 2004, detector completed in 2008

3000 km² in pampa Amarilla, Argentina

- surface detector (SD)
 - 1660 water Cherenkov detectors, triangular grid 1500 m spacing
 - \sim 100% duty cycle
- fluorescence detector (FD)
 - 24 optical detectors in 4 buildings
 - $m \bullet~\sim 13\%$ duty cycle

Shower geometry

Timing information from the FD and the SD station with the largest signal Angular resolution better than 1°

Calorimetric energy measurement

- Longitudinal shower profile: Gaisser-Hillas function
 - Energy of the cosmic ray
 - integral over the entire longitudinal profile
 - correction for E_{inv} carried away by ν and high energy μ (~ 9%)
 - FD energy resolution: 7.6% (constant with energy)

Air shower reconstruction with the surface detector

Shower geometry and lateral distribution

- shower axis from particle arrival time angular resolution $< 1^{\circ}$ if $N_{\rm st} \ge 6$
- impact point and lateral distribution from a global likelihood

SD Energy estimator

- S(1000): signal at 1000 m (fluctuations of the LDF minimized)
- Constant Intensity Cut (CIC) method to correct for the attenuation based on data ⇒ no resort to simulation

•
$$S_{38} = \frac{S(1000)}{CIC(\theta)}$$

Calibration of the SD energy estimator: with hybrid events

5 / 14

Energy calibration

Aim: relate the SD energy estimator to the FD energy measurement

- subset of high quality hybrid events reconstructed by both SD and FD: 839 selected events with $E_{FD} \ge 3$ EeV
- relation between S₃₈ and E_{FD} well described by : E_{FD} = A S₃₈^B
- Systematics uncertainty: 7% at 10 EeV, 15% at 100 EeV

Hybrid concept \Rightarrow calibration method \sim independent of MC simulation

SD energy resolution

- inferred from $\frac{E_{SD}}{E_{ED}}$ distribution
- from 16% at threshold to 12% for $E>10~{\rm EeV}$

SD spectrum I

Event selection

- zenith angle $< 60^\circ$
- station with greatest signal surrounded by a hexagon of operating stations
- \sim 64000 events above 3 EeV, $~\sim$ 5000 events above 10 EeV

SD exposure

- Integrating the number of active stations over time
 - for E > 3 EeV, acceptance saturated
 - acceptance free of MC assumption
 - uncertainty on exposure: 3%
- from Jan 2004 to Dec 2010: 20905 km² sr yr

Determination of the flux

- Influence of the bin-to-bin migration due to the energy resolution
- corrected by a foward folding approach
- \bullet weakly energy dependant, < 20% on the energy range

SD spectrum II

• total systematic incertainty on the flux: 6% (exposure + forward folding)

• energy scale affected by a systematic error of 22% due to the uncertainty on the fluorescence energy assignment.

< □ ▶

Event selection

- $\bullet\,$ zenith angle $< 60^\circ$
- strict quality criteria and anti-bias cuts \Rightarrow to minimize the influence of mass composition on the exposure

Hybrid exposure

- challenge: energy dependant hybrid exposure calculation
- time dependant MC simulation (every 10 minutes)
 - detector conditions (SD and FD)
 - measured atmospheric conditions
 - monitoring informations
- Nov 2005 Sep 2010

Hybrid spectrum II

• systematic uncertainty in the hybrid spectrum dominated by exposure calculation: 10% at 1 EeV, 6% for E > 10 EeV

very good agreement between SD and hybrid energy spectra

Combined energy spectrum I

• Using a maximum likelihood method to combine spectra

- common systematic uncertainty on energy scale for both data sets: 22%
- matching scale factors: $k_{SD} = 1.01$, $k_{FD} = 0.99$

Fractional difference

 \bullet combined energy spectrum / assumed flux $\propto E^{-2.6}$

- compatible within the systematic uncertainties with previous publication (*Phys. Lett. B 685 (2010) 239–246*) (changes in calibration)
- measurements (stereo mode) from the HiRes experiment: for comparison

Main features of the measured UHECR spectrum

 \bullet break between the 2 power laws: the ankle, observed at ~ 4 EeV

- traditionally: transition from the galactic component to a flux dominated by extragalactic sources.
- suppression of the flux above 40 EeV
 - compatible with the predicted Greisen-Zatsepin-Kuz'min (GZK) effect (energy loss in interactions with CMB photons)

Summary

Pierre Auger Observatory

- largest cosmic ray detector in operation, highest precision ever achieved
- hybrid detection: the SD provides huge aperture easily calculable, the FD nearly calorimetric energy measurement, and calibrates SD energy scale
- minimal use of simulations in the production of key scientific outputs

UHECR spectrum

- Two independent methods (SD and Hybrid)
 - compatible results
 - ${\scriptstyle \bullet}$ precise measurement over a wide energy range from 1 EeV to 100 EeV.
- The combined Auger spectrum has been derived: precise measurement of both the ankle and the flux suppression at highest energies.

Furthermore

- The Pierre Auger experiment has produced many other results concerning the UHECR mass composition, the search for anisotropies: next talks !
- Low energy enhancements of the Observatory to investigate the flux spectrum and the composition of cosmic rays with E > 0.1 EeV: poster !