The Muon ATLAS MicroMegas Activity (Micromegas R&D for ATLAS/sLHC)

Yorgos Tsipolitis NTU Athens

On behalf of the Muon ATLAS MicroMegas Activity (MAMMA R&D)

Outline

- Micromegas as an R&D project for ATLAS for sLHC
- Structure of Micromegas chamber with resistive strips
- Laboratory tests:
 - o ⁵⁵Fe source
 - X-ray gun
- Neutron beam tests at "Demokritos" lab in Athens:
 - o V-I characteristics under neutron beam
 - Spark probability
- Beam tests at H6-SPS/CERN:
 - V-I characteristics
 - Spark probability
 - Tests in ATLAS cavern
- Future Plans

ATLAS upgrade for the s-LHC

LHC upgrade to happen in two phases $L_{Phase 1} \sim 3 L_{LHC} (\sim 2014)$ $L_{Phase 2} \sim 10 L_{LHC} (s-LHC > 2017)$ Bunch Crossing = 25 ns / possibly 50 ns (Phase 2)

Muon Spectrometer affected regions :

- End-Cap Inner (CSC,MDT,TGC)
- End-Cap Middle |η|>2 (MDT,TGC)

Total area ~400 m²

Replace the Cathode Strip Chambers (CSC)

Average single plane counting rate (Hz/cm²) at the nominal LHC luminosity (CERN-ATL-GEN-2005-001)

The expected neutron fluence (kHz/cm²) in the ATLAS Hall (ATLAS muon TDR, 1997)

MDT Backgrounds using hit rate

The energy spectrum of the expected neutron background radiation in the Atlas Hall (ATLAS muon TDR, 1997)

4

ATLAS Muon upgrade Imposed Specs

- Combine triggering and tracking functions
- Matches required performances:
 - Spatial resolution <80 μ m (θ_{track} < 45°)
 - Good double track resolution
 - Time resolution ~ 5 ns
 - Efficiency > 99%
 - Rate capability > 5 kHz/cm²
 - 200 Hz/cm² due to neutrons with E>100 keV
 - Stability over about 5 years at phase-1 luminosity (≅1000 fb⁻¹)
- Cover large areas ~1m x 2m with industrial process
 - Cost effective & Robustness

Micromegas Structure

- Micromegas (I. Giomataris et al., NIM A 376 (1996) 29) are parallel-plate chambers where the amplification takes place in a thin gap, separated from the conversion region by a fine metallic mesh
- The thin amplification gap (short drift times and fast absorption of the positive ions) makes it particularly suited for high-rate applications

2008-2009: Demonstrated Performance

Sparks/Discharges

- Sparks are a major concern: they can create dead time and/or damage in the detector
- Sparks develop when local electron charge concentrations exceed a few 10⁷ e⁻ (Raether limit, M<10⁸)

For a gas gain of 10^4 any ionization process creating $\geq 10^3$ electrons in a small volume risks the development of a spark, e.g. heavily ionizing particles induced by neutrons

- Two ways to approach the problem
 - 1. Avoid high concentrations of charge, e.g. by spreading the charge (multi-stage GEMs or Micromegas)
 - 2. Live with it and make the detector insensitive to sparks
- We opted for the latter and evaluated different resistive coating options ... and it seems we found one doing the job

Resistive Micromegas Structure

23.07.2011, EPS-HEP2011

			• • •	
Fight	racictiva	ctrin	dotortore	hottot
LIGIIL	ICJIJUVC	JUIN	UCICLUIS	LEJLEU

 Small 9 x 8 cm² chambers with 250 μm r/o strip pitch

Chamber	R _{GND} (MΩ)	R _{strip} (MΩ/cm)	N _R :N _{ro}
R11	15	2	1:1
R12	45	5	1:1
R13	20	0.5	1:1
R14	100	10	1:1,2,3,4,72
R15	250	50	1:1,2,3,4,72
R16	55	35	x-y readout
R17	100	45	x-y readout
R18	200	100	x-y readout
R19	50	50	xuv readout

Variety of resistance values

- Different configurations
- Gas gains
 - 2−3 x 10⁴
 - 10⁴ for stable operation

Laboratory Tests

Yorgos Tsipolitis/NTUA

Neutron Beam Test at Demokritos

- Exposed R11,R12,R13,R16 and a standard MM in a neutron beam at Demokritos NRC (Athens); *serves as a Micromegas beam test lab*
- Neutrons of 5.5 MeV with fluxes up to 1.5 x 10⁶ n/cm² s
- Gas mixtures tested: Ar:CO₂ (80:20; 85:15, 93:7)

Nuclear Reaction	Proton/Deuteron Energy Range (MeV)	Neutron Energy Range (MeV)	
⁷ Li(p,n) ⁷ Be	1.9 to 8.4	0.1 to 6.7*	
² H(d,n) ³ He	0.8 to 8.4	3.9 to 11.5**	
³ H(d,n)⁴He	0.8 to 8.4	16.4 to 25.7***	

Neutron fluences can reach ~5x10⁶ neutrons/cm² s but for d-³H is lower an order of magnitude compared to the d-²H reaction due to cross section energy dependence

Neutron Test Beam

MM mesh currents in neutron beam

Gas: Ar:CO₂ (85:15) Neutron flux: $\approx 1.5 \times 10^6$ n/cm² s

Standard MM:

Large currents Large HV drops, recovery time O(1s) Chamber could not be operated stably

R11:

Low currents

Despite discharges, but no HV drop Chamber operated stably up to max HV

23.07.2011, EPS-HEP2011

Yorgos Tsipolitis/NTUA

Test Beam with 5.5 MeV Neutrons

- Typically a few sparks/s for gain 10⁴
- About 4x more sparks with 80:20 than with 93:7 Ar:CO₂ mixture

10000

- Neutron interaction rate independent of gas
- Spark rate/n is a few 10⁻⁸ for gain 10⁴

1000

Gain

Conclusions from neutron test

- R11,R12,R13,R16 worked fine in a neutron flux of up to 1.5 x 10⁶ n/cm² s
- * Despite sparks, no HV breakdown, no dead time
- Measured three Ar:CO₂ gas mixtures, 93:7 looks very interesting, with a spark rate almost a factor ~4 lower than for 80:20

Beam test in SPS/H6

- R11, R12, R13, and P3 chambers were tested in +120 GeV pion beam (intensities 40 kHz & 5 kHz) for two Ar:CO₂ mixtures, 85:15 and 93:7
- Main goals:
 - Study HV and current behavior of resistive and non-resistive chambers in a hadron beam
 - Measure performance (spatial resolution and efficiency) of resistive chambers
 - Study performance of long strips (0.4 m & 1m, non-resistive)
- * A few million of events are being analyzed

Beam test in H6

Ar:CO₂ – 85:15 +120 GeV pions

Slow Control Monitor for P3

Yorgos Tsipolitis/NTUA

Beam test in H6

Yorgos Tsipolitis/NTUA

Number of Clusters – Ar:CO2-85:15

Number of Clusters – Ar:CO2-93:7

Inclined tracks (40°) – µTPC

... and a two-track event

Joerg Wotschack (CERN)

Assembly of large resistive MM 1.2 x 0.6 m²

MM test in ATLAS cavern

- During February the infrastructure was installed in the ATLAS cavern
 - Location on HO (side A) 6th floor, R=6 m
 - HV and ethernet cables to USA15; HV mainframe and DAQ PC in USA15
 - Gas pipe from GSX1 to location close to rack
 - Small rack connected to safety system
- End of March installation of MMs & DAQ
 - 2 MMs for triggering only (standalone)
 - 2 MMs (R16 with xy readout and R13)
 - DAQ using the SRS system and DCS

MM test in ATLAS cavern

Events as function of time taken 13.04.2011 Rate at L \approx 2 x 10³² cm⁻² s⁻¹ is about 1/minute

Summary & Outlook

- Micromegas fulfills all the ATLAS imposed requirements; it seems to be a good candidate for the sLHC upgrade of the ATLAS small wheel
- More work underway: four small resistive-strip MM chambers were installed in the ATLAS cavern and are read out through the SRS; recorded the first clean LHC collision tracks.
- More neutron studies on the large scale Micromegas will be conducted in the near future.
- A lot of work ahead of us for a complete Micromegas+Electronics system!

BACKUP SLIDES

Activation of the Micromegas Material

TimeBin for Run 2006: 10 seconds

2D readout: R16xy (R19xuv)

r/o and resistive strips

R16 x-y event display (⁵⁵Fe γ)

23.07.2011, EPS-HEP2011