

New results on the search for spin-exotic mesons with COMPASS (diffractively produced on proton)

Frank Nerling Universität Freiburg, Physikalisches Institut for the COMPASS Collaboration

HEP 2011, Europhysics Conference on High-energy Physics, Grenoble, France, 21-27 July 2011

Outline:

- Introduction
 - Spin-exotic mesons & the COMPASS experiment
 - PWA method
- First results on diffractive 3π production (2008 proton data)
 - > 3π final states neutral vs. charged mode
 - PWA results on main & small waves
- Status on further relevant decay channels
 - $\succ \eta \, \pi, f_1 \pi$ decay channels
- Conclusions & outlook

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

Constituent quark model

- color neutral $q\overline{q}$ systems
- Quantum numbers $I^{G} J^{PC}$
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Hybrid candidates $(1.3 - 2.2 \text{ GeV/c}^2)$: lightest hybrid predicted: exotic $J^{PC} = 1^{-+}$ * $\pi_1(1400)$: VES, E852, Crystal Barrel $\rightarrow \eta\pi$ * $\pi_1(1600)$: E852, VES $\rightarrow p\pi, \eta^*\pi, f_1\pi, b_1\pi$ * $\pi_1(2000)$: E852 $\rightarrow f_1(1285) \pi, b_1(1235) \pi$ still controversial $\rightarrow COMPASS$

QCD: meson states beyond

Diffractive scattering

- study of J^{PC} exotic mesons
- t-channel Reggeon exchange
- forward kinematics, target stays intact
- small momentum transfer

Constituent quark model

- color neutral $q\overline{q}$ systems
- Quantum numbers $I^{G} J^{PC}$
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Hybrid candidates (1.3 - 2.2 GeV/c²):

lightest hybrid predicted: exotic J^{PC} =1⁻⁺

- $\pi_1(1400)$: VES, E852, Crystal Barrel -> $\eta\pi$
- $\pi_1(1600)$: E852, VES -> $\rho\pi$, $\eta^{`}\pi$, $f_1\pi$, $b_1\pi$
- $\pi_1(2000)$: E852 -> $f_1(1285) \pi$, $b_1(1235) \pi$
- still controversial → COMPASS

QCD: meson states beyond

Glueballs: gg, ggg
Hybrids: qq

gg
Tetraquarks: (qq

)(qq

)

Diffractive scattering

- study of J^{PC} exotic mesons
- t-channel Reggeon exchange
- forward kinematics, target stays intact
- small momentum transfer

Constituent quark model

- color neutral $q\overline{q}$ systems
- Quantum numbers $I^{G} J^{PC}$
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Hybrid candidates (1.3 - 2.2 GeV/c²): lightest hybrid predicted: exotic $J^{PC} = 1^{-+}$ • $\pi_1(1400)$: VES, E852, Crystal Barrel $\rightarrow \eta\pi$ • $\pi_1(1600)$: E852, VES $\rightarrow \rho\pi$, $\eta^*\pi$, $f_1\pi$, $b_1\pi$ • $\pi_1(2000)$: E852 $\rightarrow f_1(1285)\pi$, $b_1(1235)\pi$ still controversial $\rightarrow COMPASS$

COMPASS (2004 pilot run)

- 190 GeV π^- beam (Pb target)
- studied $\rho\pi$ decay channel via

 $\pi^- \operatorname{Pb} \longrightarrow \pi^- \pi^+ \pi^- \operatorname{Pb}$

=> confirmation of a 1⁻⁺ resonance at 1.66 GeV

[PRL 104 (2010) 241803]

QCD: meson states beyond

Diffractive pion dissociation

- incoming π^- excited to resonance X^-
- X⁻ decays into final state, e.g. $(3\pi)^-$:

Constituent quark model

- color neutral $q\overline{q}$ systems
- Quantum numbers $I^{G} J^{PC}$
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Hybrid candidates $(1.3 - 2.2 \text{ GeV/c}^2)$: lightest hybrid predicted: exotic $J^{PC} = 1^{-+}$ • $\pi_1(1400)$: VES, E852, Crystal Barrel $\rightarrow \eta\pi$ • $\pi_1(1600)$: E852, VES $\rightarrow \rho\pi$, $\eta^*\pi$, $f_1\pi$, $b_1\pi$ • $\pi_1(2000)$: E852 $\rightarrow f_1(1285) \pi$, $b_1(1235) \pi$ still controversial $\rightarrow COMPASS$

COMPASS (2008/09 data)

- 190 GeV π^- beam (proton target)
- study of $\rho\pi$ decay channel via:
 - a) $\pi^- \mathbf{p} \longrightarrow \pi^- \pi^+ \pi^- \mathbf{p}$ (charged mode)
 - b) $\pi^- p \longrightarrow \pi^- \pi^0 \pi^0 p$ (neutral mode)

QCD: meson states beyond

Glueballs: gg, ggg
Hybrids: qq

qq
<ul

Diffractive pion dissociation

- incoming π^- excited to resonance X^-
- X⁻ decays into final state, e.g. $(3\pi)^{-}$:

COMPASS spectrometer: Hadron setup 2008/09

Diffractive dissociation into 3π final states (2008 data, LH₂ target)

search for $\pi_1(1600)$

PWA: ~ 24M events (acceptance corrected)

PWA: ~ 1M events

PWA using isobar model

Partial wave analysis:

- program: Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- Isobars: $(\pi\pi)_{S}$ [broad $f_{0}(600)+f_{0}(1370)$], $f_{0}(980)$, $\rho(770)$, $f_{2}(1270)$, $\rho_{3}(1690)$
- Acceptance: corrections (2008: rather flat for charged, neutral not yet included)

Step 1) Mass independent PWA: (40MeV/c² bins, 53 partial waves)

Step 2) Mass dependent χ^2 **fit:** (to mass independent result)

- Main partial waves chosen, parameterised by Breit-Wigner
- Coherent background for some waves

PWA using isobar model

Partial wave analysis:

- program: Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- Isobars: $(\pi\pi)_{S}$ [broad $f_{0}(600)+f_{0}(1370)$], $f_{0}(980)$, $\rho(770)$, $f_{2}(1270)$, $\rho_{3}(1690)$
- Acceptance: corrections (2008: rather flat for charged, neutral not yet included)

Step 1) Mass independent PWA: (40MeV/c² bins, 53 partial waves)

= following results

- Step 2) Mass dependent χ^2 fit: (to mass independent result)
- Main partial waves chosen, parameterised by Breit-Wigner
- Coherent background for some waves

Comparison: Neutral vs. charged mode simple isospin symmetry check

Isospin symmetry: neutral / charge mode

- X^- decaying into $f_2 \pi$: 1/2 intensity expected
- X⁻ decaying into $\rho \pi$: 1/1 intensity expected

Frank Nerling

Two sets of partial wave totals 3π diffractive -- Neutral vs. Charged mode: 53 waves

Isospin symmetry: neutral / charge mode

- X⁻ decaying into $f_2 \pi$: 1/2 intensity expected
- X⁻ decaying into $\rho \pi$: 1/1 intensity expected

Data follows isospin symmetry:

- throughout full wave-set
- main and small waves, next slides

2.2

2.4

Selected partial waves isospin symmetry check ctd.

First glimpse on the exotic wave 3π diffractive -- Charged mode: 53 waves

Frank Nerling

Constituent quark model

- color neutral $q\overline{q}$ systems
- Quantum numbers $I^{G} J^{PC}$
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Hybrid candidates (1.3 - 2.2 GeV/c²): lightest hybrid predicted: exotic J^{PC} =1⁻⁺ • $\pi_1(1400)$: VES, E852, Crystal Barrel -> $\eta\pi$

- $\pi_1(1600)$: E852, VES $\rightarrow \rho \pi(\eta, f_1\pi) b_1 \pi$
- $\pi_1(2000)$: E852 \rightarrow $f_1(1285) \pi$, $b_1(1235) \pi$ still controversial \rightarrow COMPASS

COMPASS (2008 data)

- 190 GeV π^- beam (proton target)
- study of ρπ decay channel via:
 - a) $\pi^- p \longrightarrow \pi^- \pi^+ \pi^- p$ (charged mode)
 - b) $\pi^- p \longrightarrow \pi^- \pi^0 \pi^0 p$ (neutral mode)

QCD: meson states beyond

Diffractive pion dissociation

- incoming π^- excited to resonance X^-
- X⁻ decays into final state, e.g. $(3\pi)^{-}$:

New results on the spin-exotics search with COMPASS

22/07/2011

First studies of diffractive dissociation into $K\overline{K}\pi\pi$ final states

Physics channel: $\pi^- p \rightarrow K\overline{K} \pi \pi^- p$ **Motivation:** Search for diffr. X⁻ coupling to ss final states **First preliminary PWA started:** $\overline{K^0}K^+ \pi^- \pi^-$

search for $\pi_1(1600), \pi_1(2000)$

Statistics: 2008 data => ~ factor 10 w.r.t. BNL (~20 for 2008/09)

Summary & conclusions

• COMPASS: high potential for spin-exotic search

- ✓ 2008/09: Very high statistics taken (hadron beams, proton & nuclear targets)
- ✓ COMPASS measures **Neutral & Charged** channels
- => all relevant channels for spin-exotic search feasible

• New physics results presented (incl. exotic signals):

> $(3\pi)^-$ system studied in both decay modes: charged & neutral (consistent results) => Independent confirmation of new states within same experiment!

 \succ ($\eta' \pi$)⁻ system shows large intensity in exotic wave (high mass range, to be understood)

> $(K\overline{K}\pi\pi)^{-}$ system: feasibility shown for $f_{1}\pi$ decay channel(s)!

→ exemplarily, further kaonic channels, also: <u>Kaon diffraction</u> (using Kaon beam)

Outlook:

• More systematic studies, PWA model, Mass-dependent PWA → more work ahead

Not discussed: Low t', Primakoff, Central production, Baryon spectroscopy, OZI violation → Quite rich physics programme: various further ongoing analsyes & results!

Summary & conclusions

Additional material

Diffractive dissociation into 3π final states (2004 data, Pb target) [PRL 104 (2010) 241803]

Frank Nerling

Physics with the kaon beam: Kaon diffraction

Further exemplary channels of interest – involving neutrals

Decay modes of disputed π_1 (1600)

COMPASS has access to all of these decay modes

Not main goal, but also:

search for $\pi_1(1600)$

No evidence for $\pi_1(1600)$ Primakoff production, nor for $\pi_1(1400)$

Preliminary confirmation of CLAS experiment:

 \rightarrow no spin-exotic 1 ⁻⁺ signal in photoproduction

(structures at 1.1 GeV: non-resonating contribution (ChPT), at 1.9 GeV: some leakage)

Test of OZI violation

- Comparison of differential cross sections in ω and φ production (with respect to x_F, in pp reactions)
- value not yet released, in agreement with expectations
- good feedback received at conference

Top: Fit of ϕ yield in different x_F bins. The data is not yet acceptance corrected. Bottom: Fit of ω yield in the same x_F binning.

Blue: fit, red: background, green: peak

Frank Nerling

Primakoff production of charged 3pi at low masses

PWA analysis with amplitude from ChPT calculations substituting isobaric waves at low masses:

First measurement of $\gamma \pi^- \rightarrow \pi^- \pi^- \pi^+$ cross section in this range

Result in agreement with LO Ch.PT calculation

More data avalable from 2009 running on lead

Frank Nerling

Acceptance for $\pi^-\pi^+\pi^-$ final states

COMPASS: p_{π} =190 GeV/c

- · 4M events in 3 days (full t range)
- 450k events in 0.1<t'<1.0 GeV²/ c^{2}

BNL852: p_π=18 GeV/c

• 250k events $\Rightarrow \pi_1(1600)$

BNL controversial analyses

E,g.: E852: $\pi_1(1600) \longrightarrow [\rho^{\circ}\pi -] P$ \rightarrow limited statistics E,g.: E852: $\pi_1(1600) \longrightarrow [\rho^{\circ}\pi -] P$ \rightarrow full statistics & extended waveset

Fitted resonances (2004 data)

Resonance	Mass	Width	Intensity	Channel
	(MeV/c^2)	(MeV/c^2)	(%)	$J^{PC}M^{\epsilon}[isobar]L$
$a_1(1260)$	$1255 \pm 6^{+7}_{-17}$	$367 \pm 9^{+28}_{-25}$	$67 \pm 3^{+4}_{-20}$	$1^{++}0^+ \rho \pi S$
$a_2(1320)$	$1321 \pm 1^{+0}_{-7}$	$110 \pm 2^{+2}_{-15}$	$19.2 \pm 0.6^{+0.3}_{-2.2}$	$2^{++}1^+ \rho \pi D$
$\pi_1(1600)$	$1660 \pm 10^{+0}_{-64}$	$269 \pm 21^{+42}_{-64}$	$1.7 \pm 0.2^{+0.9}_{-0.1}$	$1^{-+}1^+ \rho \pi P$
$\pi_2(1670)$	$1658 \pm 3^{+24}_{-8}$	$271 \pm 9^{+22}_{-24}$	$10.0 \pm 0.4^{+0.7}_{-0.7}$	$2^{-+}0^+ f_2 \pi S$
$\pi(1800)$	$1785 \pm 9^{+12}_{-6}$	$208 \pm 22^{+21}_{-37}$	$0.8 \pm 0.1^{+0.3}_{-0.1}$	$0^{-+}0^{+} f_0 \pi S$
$a_4(2040)$	$1885 \pm 13^{+50}_{-2}$	$294 \pm 25^{+46}_{-19}$	$1.0 \pm 0.3^{+0.1}_{-0.1}$	$4^{++}1^+ \rho \pi G$

Observed M-dependence:

• production strength for M=1 vs. M=0 states depend on target material

- confirmed on 2009 data → real effect
- interesting to understand physics wise

COMPASS spectrometer: Hadron setup 2008/09

First comparison: Neutral vs. charged mode simple isospin symmetry check

Isospin symmetry: neutral / charged mode

- **X**⁻ decaying into $\rho \pi$: 1/1 intensity expected
- X^- decaying into $f_2 \pi$: 1/2 intensity expected

General: Branching not entirely determined by Clebsch-Gordon coeff.,

but also <u>Bose-Symmetrisation</u> with the bachelor π :

 \Rightarrow <u>no effect</u> for resonances decaying into $\rho\pi$ (same effect)

=> BR <u>might differ</u> for resonances going to $f_{0,2}\pi$

Checked by calculation:

BR = N($\pi^-\pi^0\pi^0$)/N($\pi^-\pi^-\pi^+$) – calculated from isobar model amplitudes BR($0^{-+}f_0(980)\pi$ S) = 0.44 (at 1.8 GeV)

BR($1^{++}(\pi\pi)_s\pi P$) = 0.80 (at 1.3 GeV) BR($2^{-+}f_2(1270)\pi S$) = 0.50 (at 1.67 GeV)

Selected partial waves isospin symmetry check ctd.

BR($1^{++}(\pi\pi)_s\pi P$) = 0.80 (at 1.3 GeV)

BR($2^{-+}f_2(1270)\pi S$) = 0.50 (at 1.67 GeV)

Selected partial waves isospin symmetry check ctd.

Selected partial waves & phases 3π diffractive -- Neutral vs. Charged mode: 53 waves

Frank Nerling

Selected partial waves & phases 3π diffractive -- Neutral vs. Charged mode: 53 waves

Selected partial waves & phases 3π diffractive -- Neutral vs. Charged mode: 53 waves

Decay angles in G.J. frame: Full PhaseSpace Generated Prediction vs. fitted data

Frank Nerling

Decay angles in G.J. frame Full PhaseSpace Generated Prediction

PWA using isobar model

Partial wave analysis:

- program: Illinois/Protvino/Munich (D.Ryabchikov) software (IHEP/VES, TUM/COMPASS)
- Isobars: $(\pi\pi)_{S}$ [broad $f_{0}(600)+f_{0}(1370)$], $f_{0}(980)$, $\rho(770)$, $f_{2}(1270)$, $\rho_{3}(1690)$
- Acceptance: corrections (2008: rather flat for charged, neutral not yet included)

Step 1) Mass independent PWA: (40MeV/c² bins, 53 partial waves)

$$\sigma_{indep}(\tau, m, t') = \sum_{\epsilon = \pm 1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} f_i^{\epsilon}(t') \psi_i^{\epsilon}(\tau, m) / \sqrt{\int \left| \psi_i^{\epsilon}(\tau', m) \right|^2 d\tau'} \right|^2$$

- Production amplitudes $\mathcal{T}^{\epsilon}_{ir} \rightarrow$ extended maximum likelihood fit
- Decay amplitudes $\psi_i^{\epsilon}(\tau, m)$ (Zemach tensors, D functions)

Waveset used for the PWA

	$J^{PC}M^{\epsilon}$	L	Isobar π	Treshold (GeV/c^2)					
-	$0^{-+}0^{+}$	S	$f_0(980)\pi$	1.25					
	$0^{-+}0^{+}$	S	$(\pi\pi)_s\pi$	-					
	$0^{-+}0^{+}$	P	$ ho\pi$	-					
-	$1^{-+}1^{+}$	P	$\rho\pi$	-					
-	$1^{++}0^{+}$	S	$\rho\pi$	-					
	$1^{++}0^{+}$	P	$f_2\pi$	1.20		2++1+	P	$f_2\pi$	1.20
	$1^{++}0^{+}$	P	$(\pi\pi)_s\pi$	0.94	\rightarrow	$2^{++}1^{+}$	D	$ ho\pi$	-
	$1^{++}0^{+}$	D	$\rho\pi$	1.30		3++0+	S	$ ho_3 \pi$	1.76
	$1^{++}1^{+}$	S	$\rho\pi$	-		$3^{++}0^{+}$	$\left \begin{array}{c} P \\ D \end{array} \right $	$f_2\pi$	1.20
	$1^{++}1^{+}$	P	$f_2\pi$	1.40		$3^{++}1^{+}$	$\begin{bmatrix} D\\S \end{bmatrix}$	$\rho_3\pi$	$1.20 \\ 1.76$
	$1^{++}1^{+}$	P	$(\pi\pi)_s\pi$	1.20		$3^{++}1^{+}$	P	$f_2\pi$	1.20
	$1^{++}1^{+}$	D	$\rho\pi$	1.40		3++1+	D	$\rho\pi$	1.50
	$2^{-+}0^{+}$	S	$f_2\pi$	1.20		$4^{-+}0^{+}$	$\begin{bmatrix} F \\ F \end{bmatrix}$	$\rho\pi$	1.00
	$2^{-+}0^{+}$	P	$\rho\pi$	0.80		$\frac{4}{4^{++}1^{+}}$	$\frac{\Gamma}{F}$	$\frac{\rho_{\pi}}{f_{2}\pi}$	1.60
	$2^{-+}0^{+}$	D	$(\pi\pi)_s\pi$	0.80	-	$4^{++}1^{+}$	G	$\rho\pi$	1.40
	$2^{-+}0^{+}$	D	$f_2\pi$	1.50		1-+0-	P	$\rho\pi$	-
	$2^{-+}0^{+}$	F	$\rho\pi$	1.20		$1^{-+}1^{-}$	P	$ ho\pi$	-
	$2^{-+}1^{+}$	S	$f_2\pi$	1.20		$1^{++}1^{-}$ $9^{-+}1^{-}$	$\frac{S}{S}$	$ ho\pi$	- 1.20
	$2^{-+}1^{+}$	P	$\rho\pi$	0.80		$2^{++}0^{-}$	$\left \begin{array}{c} D \\ P \end{array} \right $	$f_2\pi$	1.20 1.30
	$2^{-+}1^{+}$	D	$(\pi\pi)_{\circ}\pi$	1.20		$2^{++}0^{-}$	D	$\rho\pi$	-
	$2^{-+}1^{+}$	D	$f_{2}\pi$	1.50		2++1-	P	$f_2\pi$	1.30
	$2^{-+}1^{+}$	F	$\rho\pi$	1.20		FLAT			

Table 5: List of the 42 waves used for the mass independent PWA

Updated PWA model: 53waves

					2++1+	P	$f_{\alpha}\pi$	1.20
$J^{PC}M^{\epsilon}$	L	Isobar π	Treshold (GeV/c^2)		$2^{++}1^{+}$	$\begin{bmatrix} I \\ D \end{bmatrix}$	$\rho\pi$	-
$0^{-+}0^{+}$	S	$f_0(980)\pi$	1.25		$3^{++}0^{+}$	S	$\rho_3 \pi$	1.76
$0^{-+}0^{+}$	S	$(\pi\pi)_{\circ}\pi$	-		$3^{++}0^{+}$	P	$f_2\pi$	1.20
0-+0+	\tilde{P}	$\alpha\pi$	_		$3^{++}0^{+}$	D	$ ho\pi$	1.20
1-+1+		$\rho\pi$			$3^{++}1^{+}$	S	$ ho_3\pi$	1.76
$\frac{1}{1++0+}$		ρ_{π}	-		$3^{++}1^{+}$	P	$f_2\pi$	1.20
1++0+	5	$\rho\pi$	-		$\frac{3^{++}1^{+}}{4^{-+}0^{+}}$	D	$ ho\pi$	1.50
1++0+	P	$f_2\pi$	1.20		$4^{-+}0^{+}$	$\begin{bmatrix} F \\ F \end{bmatrix}$	$\rho\pi$	1.00
$1^{++}0^{+}$	P	$(\pi\pi)_s\pi$	0.94		4 1		$\frac{\rho \pi}{f_{-} \pi}$	1.20
$1^{++}0^{+}$	D	$\rho\pi$	1.30		4^{++1}	Γ	$J_{2\pi}$	1.00
$1^{++}1^{+}$	S	$ ho\pi$	-		<u>+0-</u>		<i>Ρ</i> ^π	1.40
$1^{++}1^{+}$	P	$f_2\pi$	1.40		1-+1-	P	$\rho\pi$ $\rho\pi$	_
$1^{++}1^{+}$	P	$(\pi\pi)_s\pi$	1.20		$1^{++}1^{-}$	$\begin{bmatrix} 1\\ S \end{bmatrix}$	$\rho\pi$	_
$1^{++}1^{+}$	D	ρπ	1.40		$2^{-+}1^{}$	S	$f_2\pi$	1.20
$2^{-+}0^{+}$	S	$f_2\pi$	1.20		$2^{++}0^{-}$	P	$f_2\pi$	1.30
$2^{-+}0^{+}$	P	$\rho\pi$	0.80		$2^{++}0^{-}$	D	$ ho\pi$	-
$2^{-+}0^{+}$		$(\pi\pi)_{-}\pi$	0.80		$2^{++}1^{-}$	P	$f_2\pi$	1.30
2^{-+0^+}		$f_0\pi$	1.50		FLAT			
2^{-+0+}		$\int 2\pi$	1.30	Table 5: List of the	49 wovog 1	read f	for the mas	s independent PWA (T
2 0 0 -+1+		f_{π}	1.20	Table 5. List of the	42 waves t	iseu i	$1 \left(0 \right)$	$\Delta = c \Delta (1 \Box \Delta \Delta)$
2 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1		$J_{2\pi}$	1.20		1		1 - (0 - +)	0+ f0(1500) p1
2^{-1}		$\rho\pi$	0.80				1 - (2 + +)	2+ rho pi D
$2 \cdot 1$		$(\pi\pi)_s\pi$	1.20				1 - (2 - +)	2+ f2 pi S
2-+1+	D	$f_2\pi$	1.50				- (-) 1_(5++)	$0 \pm rho ni C$
$2^{-+}1^{+}$	F	$\rho\pi$	1.20				I = (0++)	
							I - (6 - +)	0+ rho pı H
							1 - (0 - +)	0+ f2 pi D
							1 - (1 - +)	1+ f2 ni D
A2	14/4	nvocot	extended h	waves	・ ノ		1 (0 .)	
76	WV (78561	eviencea r	y II wuves	·)		1 - (2 - +)	U+ rno3 p1 P
<u> </u>							1 - (3 + +)	0+ f0(1400) pi

