

Measurement of the Differential Isolated Prompt Photon and Diphoton Production Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV

HEP-EPS, 23rd July 2011

Nicolas Chanon (ETH Zürich) on behalf of the CMS collaboration

Introduction

 -γ+X and γγ+X cross-section measurements probe our knowledge of perturbative QCD

- **Photons** constitute a clear signature for new physics searches : $H \rightarrow \gamma \gamma$, gravitons, supersymmetry, excited fermions. $\gamma + X$ and $\gamma \gamma + X$ processes are background for those rare processes

Outline :

I - Inclusive photon cross-section measurement

- Combined isolation method
- Photon conversion method
- Results

II - Diphoton cross-section measurement

- Electromagnetic isolation method
- Results

CMS detector

Photon reconstruction and selection

Photons are reconstructed with energy deposits in ECAL crystals

- **Barrel** : take advantage of the 3.8 T magnetic field which bends the charged particles trajectory (in case of a photon conversion)
- Endcap : merge contiguous 5×5 -crystal matrices around the most energetic crystals

Barrel

Photon identification :

- Electron rejection : the energy deposit should not be matched to hits in the pixel detector
- The **transverse shape** of the energy deposits in ECAL should be compatible with a single photon shower
- Isolation : in a cone ΔR<0.4 around the photon, use ∑E_T of energy deposits in ECAL, HCAL and ∑p_T of the charged particles measured in the tracker
- Huge background of boosted neutral mesons decaying to two photons, reconstructed as a single one
- After identification, need to statistically subtract the background component 4

Inclusive isolated photon production

- Prompt photons are produced via quark annihilation, quark-gluon compton scattering and via parton to photon fragmentation

CMS PAPER QCD 10-037

- Update of the first measurement made with 2.9 pb⁻¹ in the range $|\eta|$ <1.44 (Phys. Rev. Lett. 106, 082001, 2011) with the full 2010 dataset : 36 pb⁻¹
- Extend the measurement to forward region : 4 η bins, up to $|\eta| < 2.5$
- E_T range extended to 25-400 GeV
- Two complementary methods combined : photon conversions and isolation energy measured in the calorimeters and tracker, used to extract the signal yield

Photon conversion method : competitive at low E_T

Events/0.097

Use the variable E_T/p_T :

Ет/рт~1

- ET transverse energy measured in ECAL,

B = 3.8T

- \mathbf{p}_{T} transverse momentum of the e⁺/e⁻ pair measured in tracker.

Extract the signal yield with a binned likelihood fit :

- Signal and background pdf from Monte-Carlo
- Signal shape uncertainties : vary peak mean and width
- **Background shape uncertainties** : estimated from isolation and cluster shape sidebands in data

 E_{τ}/p_{τ}

ECAL

Isolation method : competitive at high ET

γ

jet

HCAL

- Use **ISO**, the **sum of the isolation energies** measured in the ECAL, HCAL and tracker
- Signal photons have ISO close to 0

Extract the signal yield with an unbinned likelihood fit :

- Signal and background pdf estimated from Monte-Carlo and controled with data
- Signal shape corrected for data / Monte-Carlo
- difference in $Z \rightarrow ee$ events
- **Background shape** controled with cluster shape sidebands in data
- **Uncertainties** assessed with toy experiments 20 (parameters varied within systematics)

Signal selection efficiency

Selection efficiency :

Etrig X Ereco X EID

- **Trigger** : one photon candidate with $E_T > E_T$ ^{threshold}, raising with instantaneous luminosity periods, efficiency > 99% . $\varepsilon_{trig} \sim 100\%$, (Z→ee events in data)

- **Reconstruction** : $\varepsilon_{reco} \sim 99\%$ (simulation)

- Identification EID:

- Cluster shape, isolation: measured with Z→ee events in data, corrected for photon/electron difference

- **Pixel hit veto**: uses $Z \rightarrow \mu \mu \gamma$ events in data
- **Conversion selection**: uses isolation method applied before and after conversion selection in data

Systematic uncertainties :

Conversion method :

biggest uncertainty from conversion efficiency, estimated conservatively

For isolation method,

the biggest uncertainty comes from the signal and background shapes

Isolated prompt photon cross-section

 $d^{2}\sigma/dE_{T}d\eta = N^{\gamma}\cdot \mathcal{U}/(L\cdot\epsilon\cdot\Delta E_{T}\cdot\Delta\eta),$

- Isolation and conversion results are statistically combined with the BLUE method [1] (Best Linear Unbiased Estimate)
- Comparison with **predictions from JetPhox** [2] (NLO), corrected for multiple parton interaction and hadronization effects. Pdf **CT10**, BFG II fragmentation function.

Agreement between data and theory in the whole η and E_T range considered

Data / theory comparison

- Measurement driven by conversion method at low E_T and by isolation method at high E_T
- Data below prediction in the low E_T region, agreeing within uncertainties
- Largest theoretical uncertainty from renormalization / factorization / fragmentation scales

Production of isolated diphotons

- Prompt diphoton production via quark annihilation ('Born'), gluon-gluon fusion ('Box') and via single and double parton to photon fragmentation

CMS PAPER QCD 10-035

- First measurement in CMS, with the **2010 dataset** : **36 pb⁻¹**, in the kinematical range |**η**|<**2.5**, with E_{T1}>**23**, E_{T2}>**20 GeV**, ΔR(γ1,γ2)>**0.45**
- Method using electromagnetic isolation energy
- Differential cross-section for 4 variables : $M_{\gamma\gamma}$, $P_{T,\gamma\gamma}$, $\Delta\Phi$, $\cos(\theta^*)$

ECAL isolation method

 $\Delta \eta = 2.5 \text{ xtal}$

 $\Delta R_{in} = 3.5 \text{ xtal}$

Use Ecal isolation energy :

- $\sum E_T$ collected with the crystals in a cone $\Delta R < 0.4$ around the photon
- Crystal threshold E_T>300 MeV, well above the electronic noise and readout threshold, which allows to use fully data-driven techniques

Extract diphoton yield with simultaneous unbinned likelihood fit on the two photons:

- Fully data-driven signal and background pdf
- Signal pdf with 'random cone' technique: measure Ecal isolation energy in a cone randomly thrown. Uncertainties from Z->ee and W->ev comparison.
- Background pdf with 'impinging track' method: require one track in isolation cone. Uncertainties from comparison with two tracks.
- Systematic uncertainty on signal extraction : ~5%

Signal selection efficiency for

- Selection efficiency : $\varepsilon_{trig} \propto \varepsilon_{reco} \propto \varepsilon_{ID} = 76.3\%$
- Trigger : Three paths requiring two photon candidates. $\varepsilon_{trig} \sim 100\%$ (simulation)
- Reconstruction : Estimated from simulation
- Identification :
 - Isolation and cluster shape selection : measured with Z→ee events in data, corrected for the photon/electron difference
 - Impinging track veto : measured from random cones

Comparison of the differential cross-section to theoretical predictions at NLO :

- Follow PDF4LHC prescription [3,4,5,6]
- Born and fragmentation contributions at NLO with DIPHOX [7]
- Box contribution at NLO with GAMMA2MC [8]
- Asymmetric E_T >23,20 GeV requirement improves fixed order predictions

Diphoton cross-section

Smaller azimuthal difference $\Delta \Phi$ in data than in theory (missing higher order contributions in the predictions)

Diphoton invariant mass M_{YY} Predictions underestimate data near the kinematical threshold $M_{\gamma\gamma} \sim 2 x$ $P_{T\gamma\gamma}$ ^{threshold} (corresponds to low $\Delta \Phi$ region)

Diphoton cross-section

Diphoton transverse momentum P_{TYY} Known shoulder near $P_{T,\gamma\gamma} \sim 2 \times P_{T\gamma}^{\text{threshold}}$ not reproduced in theory (corresponds to low $\Delta \Phi$ region)

cos(θ*), scattering
angle in Collins-Soper
frame,
cos(θ*)=tanh(ΔΥγγ/2)

Conclusions

Inclusive isolated prompt photon measurement :

- Extend previous CMS measurement with the 2010 dataset (36 pb⁻¹), 25 < E_T < 400 GeV in 4 η bins up to $|\eta|$ <2.5
- Combines two methods : photon conversions (competitive at low E_T) and isolation sum (competitive at high E_T)
- Agreement with NLO predictions within the whole range studied

Isolated prompt diphoton measurement :

- First presentation of this new CMS measurement, with the full 2010 dataset (36 pb ⁻¹), performed in the kinematic region E_T >23,20 GeV, ΔR>0.45, |η|
 <2.5
- Uses an innovative ECAL isolation method
- Overall agreement with NLO predictions, apart from the low $\Delta\Phi$ region, sensitive to higher order perturbative QCD effects

BACK-UP SLIDES

References : Theory

[1] L. Lyons, D. Gibaut, and P. Clifford, "How to Combine Correlated Estimates of a Single Physical Quantity", Nucl. Instrum. Meth. A270 (1988) 110.

[2] S. Catani, M. Fontannaz, J.P. Guillet et al., "Cross section of isolated prompt photons in hadron-hadron collisions", JHEP 05 (2002) 528

[3] M. Botje et al., "The PDF4LHC Working Group Interim Recommendations", arXiv: 1101.0538.

[4] H.L. Lai, M. Guzzi, J. Huston et al., "New parton distributions for collider physics", Phys. Rev. D 82 (2010) 070424

[5] A.D. Martin, W.J. Stirling, R.S. Thorne et al., "Parton distribution for the LHC", Eur. Phys. J. C63 (2009) 189

[6] NNPDF Collaboration, "A first unbiased global NLO determination of parton distributions and their uncertainties", Nucl. Phys. B838 (2010) 136

[7] T. Binoth, J. P. Guillet, E. Pilon et al., "A Full next-to-leading order study of direct photon pair production in hadronic collisions", Eur. Phys. J. C16 (2000) 311–330, arXiv:hep-ph/9911340. doi:10.1007/s100520050024.

[8] Z. Bern, L. J. Dixon, and C. Schmidt, "Isolating a light Higgs boson from the di-photon background at the LHC", Phys. Rev. D66 (2002) 074018, arXiv:hep-ph/0206194. doi: 10.1103/PhysRevD.66.074018.

The ECAL is made of scintillating crystals of PbWO4 : -Barrel : 36 "supermodules" with 1700 crystals each (coverage lnl<1.48) -Endcaps : 268 "supercrystals" with 25 crystals each (coverage 1.48<lnl<3.0) Furthermore, a preshower made of silicon strip sensors is located in front of the endcaps (1.65<lnl<2.6)

Energy resolution (measured in electron test beam) :

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E(GeV)}} \oplus \frac{b}{E(GeV)} \oplus c$$

a = 2.8% stochastic term b = 12% noise term c = 0.3% constant tern

Anomalous energy deposits in ECAL

Contamination : <0.2%

Photon selection

Photon identification :

- Electron rejection : the supercluster should not be matched to hits in the pixel detector (not applied for conversion method)
- Selection on the **transverse shape** of the energy deposit in ECAL, required to be compatible with a single photon shower
- Isolation : in a cone AR<0.4 around the photon, use ∑E_T of energy deposits in ECAL, PICAL and ∑p_T of the charged particles measured in the tracks detrine.

• ECAL information can be used to seed a Creack-finding designed specifically to tons :

- Starfstfrom molecular the deposits in ECAL
- Track inting ing hoceeds inward and outwards, taking
- into sector of the first track is the onergy loss by bremsstrahlung
- Setter the subset of the set vertex fit χ^2
- Track pairs are fitted to a common vertex imposing the constraint that they are
- Huge background of boosted meutral mesons decaying to two photons, reconstructed as a gle one
 After entification, need to statistically subtract the background component

y+X : Purity after selection

- Conversion method : High purity at low E_T.
 Higher than 60% in barrel and 45% in endcap, close to 100% at high E_T
- Isolation method :

Purity higher than 40% in barrel and 55% in endcap

Note : the two methods are using a different selection, thus the difference of purity

Low pt trend in inclusive photon cross-section ?

ATLAS CONF-2011-058

[⁻10⁴ 10³ 10³ 10² 10² 10² 10² dơ/dE_Tdη^ݖ [pb/Geỷ] 10² CDF Data, L=2.5 fb⁻¹ (a) systematic uncertainty Data 2010 $\int Ldt = 35 \text{ pb}^{-1}$ -1 NLO pQCD JETPHOX 10 CTEQ6.1M / BFG II **JETPHOX CTEQ 6.6** $\mu_{\rm F} = \mu_{\rm f} = \mu_{\rm B} = E_{\rm T}^{\gamma}$ CTEQ6.1M PDF uncertainties Data 2010 $\int Ldt = 0.85 \text{ pb}^{-1}$ b__ד scale dependence $\mu = 0.5 E_T^{\gamma}$ and $\mu = 2 E_T^{\gamma}$ ATLAS Preliminary ٢V 10⁻¹ 10⁻² 10⁻¹ 10^{-3} **0.0 < Ι**η^γ**Ι<0.6** $|m^{\gamma}| < 1.0$ 10⁻² $E_{\tau}^{iso} < 2.0 \text{ GeV}$ 10-4 1.6 data/theory data/theory 1.4 (b) **N S** 0.6 0.4 400 50 100 200 250 300 350 400 150 E_T [GeV] ;V] 0.8 50 350 300 400

CDF, Phys.Rev.D80:111106,2009

E^γ_T [GeV]

CDF Diphoton measurement

5.4 fb⁻¹ Diphoton Data PDF uncertainty Scale uncertainty

munu

3

2.5

2

1.5

∆ (**rad**)

5.4 fb⁻¹ Diphoton Data PDF uncertainty

Scale uncertainty

arXiv:1106.5123

ATLAS Diphoton measurement

arxiv:1107:0581

