

Soft QCD Results from CMS

Yuan CHAO* for the CMS Collaboration

* National Taiwan University, R.O.C.

Introduction

The frontier energy scale of LHC and the general purpose CMS detector provide us a very good environment for various quantum chromodynamics (QCD) studies.

- General purpose detector
- Dimension: 15x15x21.6 m; Weight: 12.5 kT
- Tracker & Calorimeter inside S.C. Solenoid
- Optimized for p^T and Energy measurement
- Muon system sandwiched in return york
- First muon system outside solenoid
- Big lever arm for p^T measurement

- Under 3.8 Tesla magnetic field • Pure solid state tracking system
- p^{T} resolution: 0.7 % at $\eta = 0$; 2.0 % at $|\eta| = 2.5$

Basic Low pT QCD measurements

Charged Hadron Measurements

Soft collision defined as the followings:

- Elastic scattering
- Inelastic scattering
 - Single-diffractive (SD) dissociation
 - Double-diffractive (DD) dissociation (inc. double-pomeron exchange)
 - Non-diffractive (ND) scattering

The studies focus on the non-single diffractive (NSD) interactions, which based on triggered events retaining large fraction of ND and DD, disfavoring SD.

Hard Cor

Charged particles defined as:

- Decay products of particles with proper lifetime < 1cm
- Production of secondary interactions excluded
- Correction applied for prompt leptons

p^T distribution of charged hadrons

-> connected to the presents of multiple parton interaction

Bose-Einstein Correlation

- Ω (Qr) : Fourier transform of emission region of effective size r δ : Long distance correlations : BEC strength
- BEC effective emission region grows with \sqrt{s} while strength is similar
- BEC effective emission region grows with N_{ch} , as observed by previous experiments

Near-side Long-range Correlation in pp data

First surprise in LHC data

 $E\frac{d^{3}\sigma}{dp^{3}} = F(x_{T})/P_{p_{T}}^{n(x_{T},\sqrt{s})} = F'(x_{T})/\sqrt{s}^{n(x_{T},\sqrt{s})}$ • Most compatible with PYTHIA 8 while PYTHIA 6 is worse • Empirical $x_T = 2 p_T / \sqrt{s}$ match differential cross sec. at high x_T

η distribution of charged hadrons

The $dN_{ch}/d\eta$ distributions obtained with 3 methods:

- Reconstructed clusters in barrel pixel ($p_T^{MIN} = 30 \text{ MeV}$)
- Tracklets in two barrel pixel layers ($p_T^{MIN} = 50 \text{ MeV}$)
- Tracks reconstructed in full tracker ($p_T^{MIN} = 100 \text{ MeV}$)

CMS measurements in agreement with other experiments. However densities are higher than most models and pre-LHC MC at high energy.

The production ratios $N(\Lambda)/N(K^0s)$ and $N(\Xi)/N(\Lambda)$ stays approximately constant to centre-of-mass energy.

Ridge most evident for 2 GeV $< p^{T}$ trig < 6 GeV, but disappeared at high p^T

Underlying Events Measurements

Introduction

The "Underlying Events" (UE) is everything in a single proton-proton interaction except for the hard scattering component.

Transverse

Away

Underlying Event Study with Trackjet

Looking at the transverse region of the referencing leading trackjet direction. The UE sensitive observables are checked.

7 TeV and 900 GeV results with Z1 and 4C tune MC

UE Study with Jet Area

Event & Track Selection identical to the traditional UE measurement at 900 GeV

Clear sensitivity to the differences on the Models / Tunes

Outgoing Parton pQCD Models

- Initial / final state radiation, spectators ... not enough for observed multiplicities & p^T spectra
- Multiple parton interaction (MPI) adopted in Pythia and other general MC generators
- Main parameter: p^T cut-off p^{T0}
 - Cross section regularization for $p^T \rightarrow 0$
 - As inverse effective color screening
 - Control the number of interactions $\sigma(\widehat{P_T}) \to \sigma(\widehat{P_T}) \cdot \frac{(\widehat{P_T})^4}{((\widehat{P_{T0}})^2 + (\widehat{P_T})^2)^2}$

Pythia Tunes

- Virtuality ordered shows, old MPI • CTQ5L DW, CTEQ6LL D6
- New MPI with interleaved pT ordered shower • CTQ5L Z1, CTEQ6LL Z2
- Pythia 8, new MPI with interleaved pT ordered shower • CTQ5L Tune 1, CTEQ6LL Tune 2C, 4C...

Unfolded results compared with MC of various tunes

Conclusion

charged particles

 $(p_{+} > 0.5 \text{ GeV/c}, |\eta| < 2, 60^{\circ} < |\Delta \phi| < 120^{\circ})$

- Various soft QCD analysis performed at 0.9, 2.36, 7 TeV • Charged hadron distribution from NSD studied. KNO scaling violation observed.
- Two particle correlation measured and can not be reproduced by current MC model.
- BEC observed at 0.9 and 7 TeV.
- UE analyzed at 7 TeV, unfolded results compared with many MC tunes.