

Royal Holloway University of London

HIGGS SEARCH IN THE H + bb CHANNEL IN ATLAS

Ricardo Gonçalo

Royal Holloway University of London

on behalf of the ATLAS Collaboration

International Europhysics Conference on High Energy Physics, Grenoble, July 21-27 2011

Outline

- ATLAS and the LHC
- Higgs physics at the LHC
- $ZH/WH H \rightarrow bb in ATLAS$
 - Event selection
 - Backgrounds
 - Systematic errors
 - Results
- Boosted VH
- Summary and Outlook

Muon Spectrometer: $|\eta| < 2.7$ Air-core toroids and gas-based muon chambers $\sigma/p_T = 2\%$ @ 50GeV to 10% @ 1TeV (ID+MS)

EM calorimeter: $|\eta| < 3.2$ Pb-LAr Accordion $\sigma/E = 10\%/\sqrt{E \oplus 0.7\%}$

> Hadronic calorimeter: $|\eta| < 1.7$ Fe/scintillator $1.3 < |\eta| < 4.9$ Cu/W-Lar $\sigma/E_{iet} = 50\%/\sqrt{E \oplus 3\%}$

•L = 44 m, Ø ≈ 25 m
•7000 tonnes
•≈10⁸ electronic channels
•3-level trigger reducing
40 MHz collision rate to
200 Hz of events to tape

Inner Tracker: $|\eta| < 2.5$, B=2T Si pixels/strips and Trans. Rad. Det. $\sigma/p_T = 0.05\% p_T (GeV) \oplus 1\%$

Ricardo Gonçalo

S08003

JINST (2008) 3

EPS-HEP 2011 - Grenoble - July 2011

- Very successful operation in 2011!
- Running @ √s = 7TeV and 50ns bunch crossing
- Peak instantaneous luminosity 1.28x10³³cm⁻²s⁻¹
- Average pileup <µ> ≈ 6 but peak up to 14
- Collected 20 60 pb⁻¹ per day before tech. stop
- Continue run until end of 2012
- Then shutdown and upgrade to higher Vs

Higgs Physics at the LHC

Ricardo Gonçalo

- The **simplest model** of electroweak symmetry breaking predicts one **Higgs scalar**
 - The Higgs boson mass is the only free parameter
- Current mass limits:
 - LEP excluded mass range below 114.4 GeV/c²
 - EW fit: m_H = 89⁺³⁵-26 GeV/c² (July 2010)
 - Including LEP: m_H < 185 GeV/c² (July 2010)
 - Tevatron excluded range of 158 173 GeV/c²

July 2010

March 2011

CERN-2011-002; arXiv:1101.0593

H→bb Searches in ZH/WH production

70

- This talk: ZH→IIbb and WH→Ivbb
 1.04 fb⁻¹ analyzed
- H->bb dominant at low mass
 - WH cross section factor ≈2x higher than ZH, but important top background
 - ZH less affected by top background
- Simple, robust cut-based analysis for first LHC direct search for H→bb(*)
 - Select Z or W and search for 2 additional b jets
 - Search Higgs in m_{bb} spectrum
- (*) Using newly commissioned advanced taggers. See posters by Kirika Uchida and Nicolas Bousson on b-tagging

m_H	$\sigma(WH)$	$\sigma(ZH)$	Branching Ratios
(GeV)	(pb)	(pb)	$H \rightarrow b\bar{b}$
110	0.8754	0.4721	0.745
115	0.7546	0.3598	0.705
120	0.6561	0.3158	0.649
125	0.5729	0.2778	0.578
130	0.5008	0.2453	0.494

ZH→IIbb Selection

- Trigger:
 - e (p_T^{e} >20GeV) or μ (p_T^{μ} >18GeV)
 - 2e/2µ trigger (p_T>12GeV)
- Exactly 2 leptons $p_T > 20 \text{GeV}$
 - Opposite charge for μ
- Z mass cut: 76 < m_{II} < 106 GeV
- $E_{\tau}^{miss} < 50 GeV$
- Two leading jets b tagged •

10⁶

10⁵

ATLAS Preliminary

 $\int L dt = 1.04 \ fb^{-1}$

data - Total MC

7

muon channel

0

Entries / 4 GeV

10⁵

10⁴

 10^{3}

10²

10

10⁻¹

 10^{-2}

ZH→IIbb Backgrounds

- Z + b(bb⁻) dominates:
 - Shape from MC
 - Normalization from sideband (m_{bb} < 80GeV);
 - Cross check in single-b control region m_{bi}
- Top:
 - From MC
 - Cross check in m_{II} control regions: [60GeV, 76GeV] or [106GeV, 150GeV]
- Multijet:
 - e channel: multijet sample from reverting electron quality cuts
 - μ channel: negligible (from MC)
- Diboson ZZ, WZ: from MC

WH→lvbb Selection

- Trigger: e ($p_T^e > 20 \text{GeV}$) or μ $(p_{\tau}^{\mu} > 18 \text{GeV})$
- Exactly 1 lepton $p_T > 25 \text{GeV}$
- $M_T = \sqrt{2}p_T^{I}p_T^{\nu}(1 \cos \Delta \phi_{I\nu}) > 40 \text{ GeV}$
- $E_{\tau}^{miss} > 25 GeV$
- Exactly 2 jets (anti- k_{T} 0.4; E_{T} > 25GeV) to reduce top background

data

Top

7

200

Diboson

Multijet

50

100

150

10³

10²

10

0

WH→lvbb Backgrounds

- W+jets and top dominant:
 - W+jets important at low m_{bb}:
 - Use m_{ii} from data as template
 - Top dominant at high m_{bb}:
 - Describe shape with MC
 - Cross check m_{bb} in 3-jet bin
 - Normalisation from m_{bb} sidebands [40GeV, 80 GeV] and [140GeV, 250GeV]
- Z+jets: use same normalisation of MC as measured in ZH
- Multijet Data templates from QCD enhanced samples (antiisolation)
- Diboson WW , WZ from Monte Carlo

Systematic Uncertainties

- Dominant systematic errors from b-tagging efficiency in both analyses
- Followed by jet energy scale
- Points at the next things things to improve!

			-
Source of Uncertainty	Effect on the signal		
	$m_H = 115 \text{ GeV}$	$m_H = 130 \text{ GeV}$	
Electron Energy Scale	< 1%	< 1%	-
Electron Energy Resolution	< 1%	< 1%	
Muon Momentum Resolution	1%	3%	
Jet Energy	9%	7%	
Jet Energy Resolution	< 1%	< 1%	
Missing Transverse Energy	2%	2%	+
<i>b</i> -tagging Efficiency	16%	17%	↓
<i>b</i> -tagging Mis-tag Rate	< 1%	< 1%	Б
Electron Efficiency	1%	1%	σ
Muon Efficiency	1%	1%	
Luminosity	4%	4%	-
Higgs Cross-section	5%	5%	
	-		=
Course of Uncontainty	Effect on the signal		
Source of Uncertainty	Effect on	the signal	
Source of Uncertainty	$m_H = 115 \text{ GeV}$	the signal $m_H = 130 \text{ GeV}$	
Electron Energy Scale	$m_H = 115 \text{ GeV}$ 1%	$\frac{m_H = 130 \text{ GeV}}{1\%}$	
Electron Energy Scale Electron Energy Resolution	$m_H = 115 \text{ GeV}$ 1% 1%	$\frac{m_H = 130 \text{ GeV}}{1\%}$	
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution	Effect on $m_H = 115 \text{ GeV}$ 1% 1% 4%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1%	-
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution Jet Energy	Епест оп $m_H = 115 \text{ GeV}$ 1% 4% 1%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1% 3%	
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution Jet Energy Jet Energy Resolution	Effect on $m_H = 115 \text{ GeV}$ 1% 1% 4% 1% 1% 1%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1% 3% 1%	– HM
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution Jet Energy Jet Energy Resolution Missing Transverse Energy	Effect on $m_H = 115 \text{ GeV}$ 1% 1% 4% 1% 1% 2%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1% 3% 1% 3% 1% 3%	M+→M
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution Jet Energy Jet Energy Resolution Missing Transverse Energy <i>b</i> -tagging Efficiency	Effect on $m_H = 115 \text{ GeV}$ 1% 1% 4% 1% 1% 2% 16%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1% 3% 1% 3% 1% 3% 1% 3% 1%	d∕l+HM
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution Jet Energy Jet Energy Resolution Missing Transverse Energy <i>b</i> -tagging Efficiency <i>b</i> -tagging Mis-tag Fraction	Effect on $m_H = 115 \text{ GeV}$ 1% 1% 4% 1% 1% 2% 16% 3%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1% 3% 1% 3% 1% 3% 17% 3%	
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution Jet Energy Jet Energy Resolution Missing Transverse Energy <i>b</i> -tagging Efficiency <i>b</i> -tagging Mis-tag Fraction Electron Efficiency	Effect on $m_H = 115 \text{ GeV}$ 1% 1% 4% 1% 2% 16% 3% 1%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1% 3% 1% 3% 17% 3% 1% 3% 1%	WH→IVbb
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution Jet Energy Jet Energy Resolution Missing Transverse Energy <i>b</i> -tagging Efficiency <i>b</i> -tagging Mis-tag Fraction Electron Efficiency Muon Efficiency	Effect on $m_H = 115 \text{ GeV}$ 1% 1% 4% 1% 2% 16% 3% 1% 1%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1% 3% 1% 3% 17% 3% 1% 1% 1%	WH→IVDD
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution Jet Energy Jet Energy Resolution Missing Transverse Energy <i>b</i> -tagging Efficiency <i>b</i> -tagging Mis-tag Fraction Electron Efficiency Muon Efficiency Luminosity	Effect on $m_H = 115 \text{ GeV}$ 1% 1% 4% 1% 2% 16% 3% 1% 1% 4%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1% 3% 1% 3% 17% 3% 17% 3% 1% 1% 4%	MH→IApp
Electron Energy Scale Electron Energy Resolution Muon Momentum Resolution Jet Energy Jet Energy Resolution Missing Transverse Energy <i>b</i> -tagging Efficiency <i>b</i> -tagging Mis-tag Fraction Electron Efficiency Muon Efficiency Luminosity Higgs Cross-section	Effect on $m_H = 115 \text{ GeV}$ 1% 1% 4% 1% 2% 16% 3% 1% 1% 1% 4% 5%	the signal $m_H = 130 \text{ GeV}$ 1% 1% 1% 3% 1% 3% 17% 3% 1% 1% 4% 5%	WH→IVbb

H→bb Analysis Results

Ricardo Gonçalo

-

- Good description of the background
- No excess observed
- Single-channel exclusion of ≈20x Standard Model

	expected				
Source	events		(stat.)		(sys.)
Z+jets	261.0	±	7.8	±	24.6
Top-quark	52.0	±	1.3	±	10.6
Multijet	1.4	±	0.4	±	1.4
ZZ	9.2	±	1.1	±	2.3
WZ	1.1	±	0.3	±	0.3
Total background	324.8	±	8.0	±	27.9
Data	329				
Signal $m_H = 110 \text{ GeV}$	2.22	±	0.09	±	0.43
Signal $m_H = 115 \text{ GeV}$	1.91	±	0.07	±	0.38
Signal $m_H = 120 \text{ GeV}$	1.58	±	0.06	±	0.32
Signal $m_H = 125 \text{ GeV}$	1.44	±	0.05	±	0.28
Signal $m_H = 130 \text{ GeV}$	1.02	±	0.04	±	0.20

- Good description of the background
- No excess observed
- Single-channel exclusion of ≈20x Standard Model

	expected				
Source	events		(stat.)		(sys.)
Z+jets	261.0	±	7.8	±	24.6
Top-quark	52.0	±	1.3	±	10.6
Multijet	1.4	±	0.4	±	1.4
ZZ	9.2	±	1.1	±	2.3
WZ	1.1	±	0.3	±	0.3
Total background	324.8	±	8.0	±	27.9
Data	329				
Signal $m_H = 110 \text{ GeV}$	2.22	±	0.09	±	0.43
Signal $m_H = 115 \text{ GeV}$	1.91	±	0.07	±	0.38
Signal $m_H = 120 \text{ GeV}$	1.58	±	0.06	±	0.32
Signal $m_H = 125 \text{ GeV}$	1.44	±	0.05	±	0.28
Signal $m_H = 130 \text{ GeV}$	1.02	±	0.04	±	0.20

- Good description of the background
- No excess observed
- Single-channel exclusion of ≈20x Standard Model

[GeV] m_{bb} expected Source events (stat.) (sys.) 261.0 7.8 24.6 Z+jets ± ± Top-quark 52.0 1.3 10.6 \pm \pm Multijet 1.4 ± 0.4 1.4 ± 2.3 ZZ 9.2 1.1 ± ± WΖ 0.3 1.1 0.3 ± ± Total background 324.8 8.0 27.9 ± ± 329 Data 2.22 Signal $m_H = 110 \text{ GeV}$ 0.09 0.43 ± ± Signal $m_H = 115 \text{ GeV}$ 1.91 ± 0.07 0.38 ± Signal $m_H = 120 \text{ GeV}$ 1.58 0.32 ± 0.06 \pm 1.44 Signal $m_H = 125 \text{ GeV}$ 0.05 0.28 ± ± Signal $m_H = 130 \text{ GeV}$ 1.02 0.04 0.20 ± ±

Entries / 10 GeV

- Good description of the background
- No excess observed
- Single-channel exclusion of ≈20x Standard Model

expected Source events (stat.) (sys.) 261.0 7.8 24.6 Z+jets ± ± Top-quark 52.0 1.3 10.6 \pm \pm Multijet 1.4 ± 0.4 1.4 ± 2.3 ZZ 9.2 1.1 ± ± WΖ 0.3 1.1 0.3 ± ± Total background 324.8 8.0 27.9 ± ± 329 Data 2.22 Signal $m_H = 110 \text{ GeV}$ 0.09 0.43 ± ± Signal $m_H = 115 \text{ GeV}$ 1.91 ± 0.07 0.38 ± Signal $m_H = 120 \text{ GeV}$ 1.58 0.32 ± 0.06 \pm 1.44 Signal $m_H = 125 \text{ GeV}$ 0.05 0.28 \pm ± Signal $m_H = 130 \text{ GeV}$ 1.02 0.04 0.20 ± ±

WH-Ivbb

- Good description of the background
- No excess observed
- Single-channel exclusion of ≈20-30x Standard Model

	expected	1			
Source	events		(stat.)		(sys.)
Z+jets	54.4	±	3.9	±	12.3
W+jets	466.7	±	1.4	±	67.1
Top-quark	1141.8	±	8.8	±	81.2
Multijet	193.0	±	9.4	±	96.5
WZ	16.1	±	2.2	±	3.5
WW	4.8	±	1.1	±	1.4
Total background	1876.6	±	13.7	±	150.7
Data	1888				
Signal $m_H = 110 \text{ GeV}$	6.72	±	0.31	±	1.20
Signal $m_H = 115 \text{ GeV}$	5.25	±	0.30	±	0.97
Signal $m_H = 120 \text{ GeV}$	4.54	±	0.25	±	0.83
Signal $m_H = 125 \text{ GeV}$	4.08	±	0.21	±	0.77
Signal $m_H = 130 \text{ GeV}$	3.28	±	0.17	±	0.62

- Alternative to inclusive channels: search for high-pT Higgs to bb:
 - J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam, Phys. Rev. Lett. 100 (2008) 242001, arXiv:0802.2470 [hep-ph]
- $p_T^H > 200 \text{GeV} \approx 5\%$ of inclusive cross section but improved significance
- Select W→lv events and search for a H→bb jet
 - Search for high-p_T jet (Cambridge-Aachen algorithm, R=1.2)
 - 2. Search jet clustering history in reverse and look for large mass drop
 - 3. Re-cluster with small R parameter to find sub jets
- Peak consistent with
 W→jj in tt events
- Proof of principle for future analysis

See talk by D.Miller in QCD yesterday

Conclusions & Outlook

Ricardo Gonçalo

- First direct search for H→bb at the LHC in WH and ZH channels
- Combined sensitivity to ≈10-20x Standard Model
- Room for improvement!
 - Reduce systematics
 - New channels to explore
 - Multivariate analyses
 - Lots of data expected!
- Proof of principle for boosted Higgs analysis
- Watch this space!

Ref.: ATLAS-CONF-2011-103

ATLAS & LHC: Efficiency and Pileup

- Very good ATLAS performance
 - Data-taking efficiency above 95%
- Luminosity-weighted distribution of the mean number of interactions per crossing for 2011
- Calculated from the instantaneous luminosity as:
 - μ =L x σ_{inel} / (n_{bunch} x f_r)
 - L: instantaneous luminosity
 - σ_{inel} : inelastic cross section (71.5 mb)
 - n_{bunch}: number of colliding bunches
 - f_r: LHC revolution frequency
- Entries at $\mu \approx 0$ from pilot bunches
- See: arXiv:1101.2185

Monte Carlo Samples

Process	Generator	$\sigma \times BR$
WH	PYTHIA	See Tab. 1
ZH	PYTHIA	See Tab. 1
$W \rightarrow \ell \nu$	ALPGEN	10.46 nb [36, 37]
$Z/\gamma * \rightarrow \ell \ell$	ALPGEN, PYTHIA	
$m_{\ell\ell} > 40 \text{ GeV}$		1.07nb [36, 38]
$m_{\ell\ell} > 60 \text{ GeV}$		0.989 nb [36, 38]
WW	MC@NLO+gg2WW	46.23 pb [32, 33]
$WW \rightarrow l\nu qq$	HERWIG	46.23 pb [32, 33]
WZ	MC@NLO	
$66 < m_{\ell\ell} < 116 \mathrm{GeV}$		18.0 pb [33]
ZZ	MC@NLO, PYTHIA	
$66 < m_{\ell\ell} < 116 { m GeV}$		5.96 pb [33]
Top quark		_
tī	MC@NLO	164.6 pb [39]
t-channel	MC@NLO	58.7 pb [33]
s-channel	MC@NLO	3.94 pb [33]
Wt-channel	MC@NLO	13.1 pb [33]
$b\bar{b} \rightarrow \mu\mu$	PYTHIA	73.9 nb
$c\bar{c} \rightarrow \mu\mu$	PYTHIA	28.4 nb

Table 2: Monte Carlo programs used for modeling signal and background processes and the crosssections times branching ratio (BR) used to normalize the different processes. Branching ratios correspond to the decays shown. Where two generators are given the second is used to estimate systematic uncertainties. • Common event selection:

	$ZH \rightarrow \ell\ell b\bar{b}$	$WH \to \ell \nu b \bar{b}$	
Trigger	single/dilepton	single lepton	
Primary vertex	primary vertex with > 3 tracks		
Number of leptons	exactly two	exactly one	
Invariant/transverse mass	$76 < m_{ll} < 106 \text{ GeV}$	$m_T > 40 \text{ GeV}$	
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} < 50 { m GeV}$	$E_{\rm T}^{\rm miss} > 25 { m GeV}$	
Jets	at least two	exactly two	
b-tagged jets	exactly two	exactly two	

• Lepton Identification:

	$ZH \rightarrow \ell\ell b\bar{b}$		$WH \rightarrow \ell \nu b \bar{b}$		
	e channel	μ channel	e channel	μ channel	
Kinematic cuts	$E_T^e > 20 \text{ GeV}$	$P_T^{\mu} > 20 \text{ GeV}$	$E_T^e > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	
	$ \eta^e_{cluster} < 2.47$	$ \eta^{\mu} < 2.5$	$ \eta^e_{cluster} < 2.47$	$ \eta^{\mu} < 2.4$	
impact parameter	$ d_0 <$	1 mm	$ d_0 < 0.1 \text{ mm}$		
	$ z_0 < 10 \text{ mm}$ $ z_0 < 10 \text{ mm}$			10 mm	
Track isolation	$\sum_{tracks} P_T^{track}(\Delta R < 0.2)/p_T^{\mu} < 0.1$				

• Jet reconstruction:

Constituents	Topological jets
Identification	Anti- $K_T R = 0.4$
Kinematic cuts	$P_T^{jet} > 25 \text{ GeV}$
	$ \eta^{jet} < 2.5$
Pile-Up conditions	JVF > 0.75

Detector related uncertainties

Source of Uncertainty	Treatment in analysis
Jet Energy Scale (JES) [61]	$2-7\%$ as a function of $p_{\rm T}$ and η
Jet Pile-up Uncertainty	$2-7\%$ as a function of $p_{\rm T}$ and η
b-quark Energy Scale	2.5%
Jet Energy Resolution [62]	5 - 12%
Electron Selection Efficiency	$0.7 - 3\%$ as a function of $p_{\rm T}$, $0.4 - 6\%$ as a function of η
Electron Trigger Efficiency	$0.4 - 1\%$ as a function of η
Electron Reconstruction Efficiency	$0.7 - 1.8\%$ as a function of η
Electron Energy Scale	$0.1 - 6\%$ as a function of η , pileup, material effects etc.
Electron Energy Resolution	Sampling term 20%, a small constant term has a large variation with η
Muon Selection Efficiency	$0.2 - 3\%$ as a function of $p_{\rm T}$
Muon Trigger Efficiency	< 1%
Muon Momentum Scale	$2 - 16\% \eta$ -dependent systematic on scale
Muon Momentum Resolution	$p_{\rm T}$ and η -dependent resolution smearing functions, systematic $\leq 1\%$
<i>b</i> -tagging Efficiency	$5-14\%$ as a function of $p_{\rm T}$
b-tagging Mis-tag Fraction	$8-12\%$ as a function of $p_{\rm T}$ and η
Missing Transverse Energy	Add/subtract object uncertainties in $E_{\rm T}^{\rm miss}$

Normalization Systematic Uncertainties

Source of Uncertainty	Treatment in analysis		
	ZH	WH	
Luminosity	3.7%	3.7%	
Higgs cross-section	5%	5%	
Background norm. and shape:			
Тор	9%	6%	
Z+jets	11% plus shape	11%	
W+jets	negligible	14% plus shapes	
ZZ	11%	negligible	
WZ	11%	11%	
WW	negligible	11%	
QCD multijets	100%	50%	