# Search for the Higgs Boson in the $\gamma\gamma$ Channel with 1.1 fb<sup>-1</sup> of Data Taken in 2011 with the ATLAS Detector

Marumi Kado Laboratoire de l'Accélérateur Linéaire (LAL) IN2P3, CNRS

#### On behalf of the ATLAS Collaboration

International Europhysics Conference on High Energy Physics



International Europhysics Conference HEP 22/07/2011

## Relevance of the yy Channel



Still e.g. NMMSSM (U. Ellwanger Phys.Lett. B 698, 293-296,2011) up to x6 at low masses, Fermiophobia...

- If observed implies that it does not originate from spin 1 : Landau-Yang theorem L. Landau, Dokl. Akad. Nauk. , USSR 60, 207 (1948) and C. N. Yang, Phys. Rev. 77, 242 (1950).

## Simple Signature Channel



Very simple signature (and analysis selection)

Two tightly identified and isolated photons with :

 $\begin{array}{l} p_{\perp}^{\gamma_{1}} > 40 \ GeV/c \\ p_{\perp}^{\gamma_{2}} > 25 \ GeV/c \\ \\ |\eta_{\scriptscriptstyle 1,2}| < 1.37 \ \text{and} \ 1.52 < |\eta_{\scriptscriptstyle 1,2}| < 2.37 \end{array}$ 

Photon Identification based both on the lateral and longitudinal segmentation of the calorimeter

## Photon Reconstruction



#### $\pi^0$ - $\gamma$ Rejection



Lateral segmentation :

Longitudinal

segmentation :

- for barrel photons -

Photon isolation :

- Shower shape variable in S2
- Fine S1 granularity ~0.003 in pseudo rapidity
- Excellent  $\gamma$ - $\pi^0$  rejection
- Simple cuts technique
- Calorimeter based (0.4 cone)
- Out-of-(inner)-cone leakage corrections
- Underlying event and pile-up (PU) correction event based (using a Jet-Area type of algorithm)

## Photon Energy Calibration The Electromagnetic Calorimeter Uniform by Construction

- Crack-less Accordion geometry



SA constant term : ~0.5% (per TB module)

- γ Calibration : MC based calibration (EM Calorimeter full simulation tuned in Test Beam) and accurate material description upstream (Verified with in situ measurements).





(Conversions, e<sup>-</sup> shower shapes, energy flow, E/p distributions, etc...)

## Energy scale calibration from Z decays to electrons ... In absence of a significant $\gamma$ calibration signal\*

- After MC based calibration, apply electron energy scale corrections from a global fit to the 2010 data (Z to e<sup>+</sup>e<sup>-</sup>).

- Coarse corrections averaged in  $\varphi$ 

- Resolution correction derived from a comparison of the MC to the data in electrons.

- Energy scale and resolution corrections do not necessarily apply to photon : taken into account in material effect systematic uncertainty.

\* Z $\gamma$  events are still too scarce and low  $E_{\scriptscriptstyle T}$ 



## Reconstruction of the Angle in Space



## Reconstructing the diPhoton Invariant Mass

- Primary vertex reconstruction :
  - Photon calorimeter pointing
  - Use conversion tracks when available

Robust against PU

- Energy scale calibration from Z to electrons applied
- Crystal Ball + Gaussian model with narrow widths (of the core of the distribution) :



## The Analysis

#### The Dataset

- Primary trigger selection : 2 photons E<sub>T</sub>> 20 GeV
- Lumi block based data quality selection
- Event based DQ selection
- Photon based DQ selection

Integrated luminosity of : 1.08 fb<sup>-1</sup>





## Main Backgrounds





Final state parton(s) fragments into a leading  $\pi^0$ 

Best estimate by parton-level fixed order NLO JetPhox (S. Catani, M. Fontannaz et al.)

Also note : large difference Pythia vs. Herwig in the leading  $\pi 0$  fragmentation

#### **Background Estimates in Data**

- Apply the side-band method on each photon separately
- Allows to estimate  $N_{\gamma\gamma}\text{, }N_{\gamma j}\text{, and }N_{jj}$

$$N_A - N_A^{sig} = N_B \times \frac{N_C}{N_D}$$



- N<sub>γγ</sub>, contains also bkg. From fake electrons (mostly DY) : estimated on Z to electrons events.

International Europhysics Conference HEP 22/07/2011

#### **Background Estimates in Data**

- Apply the side-band method on each photon separately



#### Analysis in Categories

- 1.- Unconverted-central: 2 UC In the central barrel calorimeter ( $|\eta|$ <0.75)
- 2.- Unconverted-rest: 2 UC , at least one not central
- 3.- Converted-central: at least 1 Conv., 2 central
- 4.- Converted-transition: at least 1Conv. And 1 near the transition barrel/end-cap(1.3<  $|\eta|$ <1.75)

5.- Converted-rest: all other events with at least 1 Conv.



#### Analysis in Categories

- 1.- Unconverted-central: 2 UC In the central barrel calorimeter ( $|\eta|$ <0.75)
- 2.- Unconverted-rest: 2 UC , at least one not central
- 3.- Converted-central: at least 1 Conv., 2 central
- 4.- Converted-transition: at least 1Conv. And 1 near the transition barrel/end-cap( $1.3 < |\eta| < 1.75$ )

5.- Converted-rest: all other events with at least 1 Conv.



#### Systematic Uncertainties

- Uncertainties on the signal yield : Total ±12%
  - Reconstruction and identification efficiency ±11%
  - Isolation cut efficiency : ±3%
  - Trigger efficiency : ±1%
  - Luminosity : 3.7%
  - Effect of  $P_{T}^{\gamma\gamma}$  modeling on the kinematical cut acceptance : 1%
- Uncertainties on the invariant mass resolution : Total ±14%
  - Constant term of the cluster energy resolution : ±12%
  - Photon calibration arising in the extrapolation of the energy scale calibration of electrons :  $\pm 6\%$
  - Contribution of pileup fluctuations to the cluster energy measurement : < 3%
  - Photon angle measurements : 1%
- All systematic uncertainties are taken as fully correlated between the different categories (non-correlated systematic uncertainties negligible impact)

#### The H→γγ Results

- Use a simple exponential model for the background
- Use Profile Likelihood test statistic to derive 95% CL limits and statistical significance 1-CL<sub>b</sub>
- No significant excess observed



#### The H→γγ Results

- Use a simple exponential model for the background
- Use Profile Likelihood test statistic to derive 95% CL limits and statistical significance 1-CL<sub>b</sub>
- No significant excess observed



- Use modified frequentist approach  ${\rm CL}_{\rm s}$
- Sensitivity between 3 and 5 times NNLO standard model cross section
- Observed exclusion between 2 and 6 times the NNLO SM cross section

### **Conlusions and Outlook**

- The Higgs to  $\gamma\gamma$  analysis has been improved since Moriond 2011 and PLHC 2011 with the use of photon categories (in  $\eta$  and conversion status).

- This search is starting to reach a good sensitivity (~3 x NNLO SM cross section 95% exclusion).
- No significant excess observed and limits are set in agreement with the sensitivity.
- Expected sensitivity to SM exclusion ~10 x NNLO SM cross section.

