Status of Neutrino Astronomy (Mini-review on neutrino telescopes)

Alexander Kappes EPS 2011 21. July 2011, Grenoble, France

HUMBOLDT-UNIVERSITÄT ZU BERLIN

Outline

- Introduction
- Neutrino telescopes
- Current status
 - Sensitivities of neutrino telescopes
 - Galactic and extragalactic sources
 - Dark Matter
 - Beyond neutrino physics: cosmic-ray anisotropies

Neutrino fluxes

Neutrino fluxes

Why neutrino astronomy?

- Neutrinos point back to the source
- Neutrinos travel cosmological distances
- Neutrinos escape also optical dense sources
- Neutrinos are a smoking-gun evidence for hadron acceleration

Neutrinos provide complementary information to gamma-ray photons and protons

Detection principle

5

Alexander Kappes, EPS 2011, Grenoble, 21.07.2011

Neutrino signatures:

Track-like:

- Source: v_{μ} CC interaction
- Good angular resolution (< 1°)
- Sensitive >> instrumented volume

Cascade-like:

- Source: v_e , v_μ , $v_\tau NC$ + $v_e CC$ interaction
- Good energy resolution (few 10%)
- Bad angular resolution ($> O(10^\circ)$)
- Sensitive ≈ instrumented volume

Composites:

- Source: v_{τ} CC + v_{μ} CC inside instrumented volume
- Challenging to reconstruct

cascade (IceCube)

Backgrounds

Muons detected per year

- atmospheric* μ 7×10¹⁰
- atmospheric^{**} $\nu \rightarrow \mu$ 8×10⁴
- cosmic $\nu \rightarrow \mu$ ~10

7

cosmic

Sky coverage

Alexander Kappes, EPS 2011, Grenoble, 21.07.2011

Neutrino Telescope Projects

Alexander Kappes, EPS 2011, Grenoble, 21.07.2011

Sensitivities to point sources

Sensitivities to point sources

Sensitivities to diffuse neutrino flux

Alexander Kappes, EPS 2011, Grenoble, 21.07.2011

Galactic sources

- Energy Galactic CRs: ~10⁻¹² erg/cm³ \rightarrow injection power: ~10⁻²⁶ erg/(cm³ s) (escape time CRs $\sim 3 \times 10^6$ yr)
- SNe provide energy and environment
 - 10% of 10⁵¹ erg/SN every 30 yr (Baade and Zwicky 1934)
 - shock acceleration (Fermi 1949)

Grigorov 4 JACEE

10

Cosmic ray spectrum

Knee

 10^{19}

 10^{20}

Galactic sources

 Cosmic rays must produce pionic γ-rays in interactions with hydrogen in Galactic plane

- \rightarrow translation of γ into ν fluxes
- Best environments: star forming regions

Stacking of 6 Milagro SNRs (Abbasi et al. 2011):

model	sensitivity	p-value	upper limit
3 events	2.9 × model	2% (posteriori)	7.2 × model
model Halzen AK O'Murchadha (2008)			

model Halzen, AK, O'Murchadha (2008)

Cygnus region seen by Milagro

Galactic Lor

Extragalactic sources

- Source requirements:
 - acceleration up to 10²⁰ eV
 - produce energy in cosmic rays ($\sim 3 \times 10^{-19} \text{ erg/cm}^3 \Rightarrow \sim 8 \times 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$)
- Best (only?) candidates: AGNs and GRBs

- Active Galactic Nuclei (AGNs):
 - Auger: sources revealed?
 - \rightarrow weak AGN correlation decreased since 2008
 - \rightarrow in conflict with composition measurements
 - neutrino-flux predictions difficult

Extragalactic sources: GRBs

- Gamma-Ray Bursts (GRBs):
 - provide energy and environment to explain extragalactic cosmic rays (~10⁵² erg × 100/Gpc³)
- Source model (Ahlers et al. 2011):
 - acceleration in internal shocks (fireball model)
 - collide accelerated protons with photons: $p+\gamma \rightarrow n+\pi^{+}$ and $p+\pi^{0}$
 - observed cosmic rays from n decay
 - Neutrino and photon flux from pion decay

IceCube challenges GRBs as major sources of extragalactic cosmic rays

Dark Matter (WIMPs)

- Gravitational capture of WIMPs in the Sun followed by self annihilation
- Neutrino rate only depends on scattering cross section (equilibrium between capture and annihilation)
 - \rightarrow Sensitive to spin-dependent cross section
- Expected v energies < 1 TeV

WIMP sensitivities

- Spin-independent σ_{scat} well constrained by direct searches
- Solar dark matter searches probe *spin-dependent* σ_{scat}
- DeepCore will probe large region of allowed phase space

talks
F. Lee (low energy),
H. Melbeus (Kaluza-Klein),
G. Lambard (Antares)

WIMP sensitivities

- Spin-independent σ_{scat} well constrained by direct searches
- Solar dark matter searches probe *spin-dependent* σ_{scat}
- DeepCore will probe large region of allowed phase space

Neutrino telescope physics

flaring/periodic sources

follow-up programs

supernovae (MeV v's)

400

Lorentz violation

Alexander Kappes, EPS 2011, Grenoble, 21.07.2011

90

NChannel

Cosmic-ray anisotropy

- Gyroradius < 1 pc in μ G Galactic B-field
- Closest sources ~100 pc
 - \rightarrow cosmic rays should not point !

Cosmic-ray anisotropy

- Gyroradius < 1 pc in μ G Galactic B-field
- Closest sources ~100 pc
 - \rightarrow cosmic rays should not point !

Summary

- Full-sky coverage with completed neutrino telescopes
 - IceCube scans northern sky with unsurpassed sensitivity
 - Antares observes interesting Galactic center region . . .
 - ... but KM3NeT in Northern hemisphere badly needed

• Analysis results so far:

- Searches for cosmic neutrinos with negative results
- IceCube limits challenge GRBs as major sources of extragalactic cosmic rays
- Exciting physics beyond neutrino astronomy

• Outlook:

- IceCube enters discovery region for Galactic sources
- Upcoming years will be critical for neutrino astronomy

