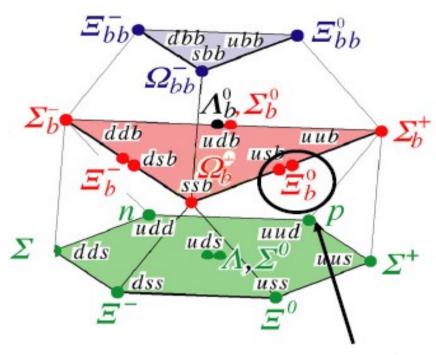
First observation of the Ξ_b^0 baryon

New result for this conference.

Peter Bussey

University of Glasgow


For the CDF Collaboration

The b-baryon family

The family of $j = \frac{1}{2}$ b-baryons is related to the s-baryons by replacing s by b.

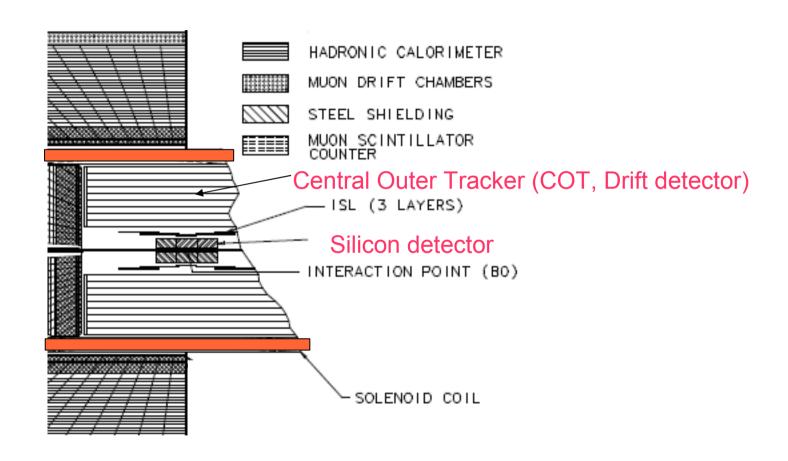
so far not yet observed

So far within our reach are the "single-b" baryonic states. Look for the missing Ξ_b^0 . Important to keep checking quark model and measure masses of states to compare to theory:

E Jenkins, P.R. D77 (2008) 034012, R. Lewis and R.M. Woloshyn, P.R. D79 (2009) 014502, D. Ebert et al., P.R. D72 (2005) 034026, M Karliner et al., Ann. Phys. (NY) 324 (2009) 2, A Valcarce et al., Eur. Phys. J. A37 (2008) 217

Brief history of b-baryons

The b-baryons have required high energy and beam intensity for their observation:


$$\Xi_b^0$$
 |usb>

These baryons have high branching ratios into semileptonic states but this means a neutrino is unobserved. Best to search in a rarer but completely reconstructible fully hadronic state.

N.b. "+ charge conjugate" is implied throughout these pages.

CDF detector

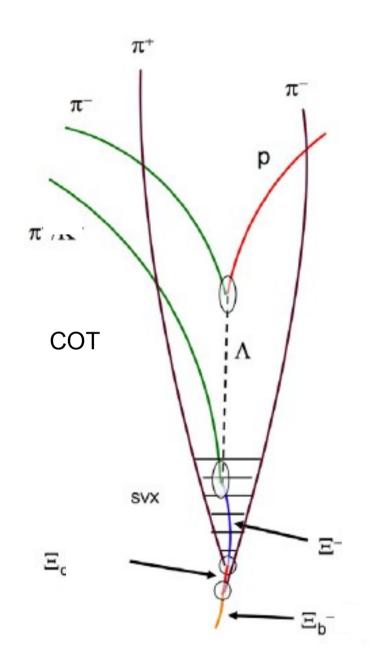
The main sections of the CDF detector used for this analysis:

A displaced track trigger, using silicon and COT information, was used to select events.

4.2 fb⁻¹ of integrated luminosity used for this measurement.

Search methodology

One search possibility is to use decays into J/ψ .

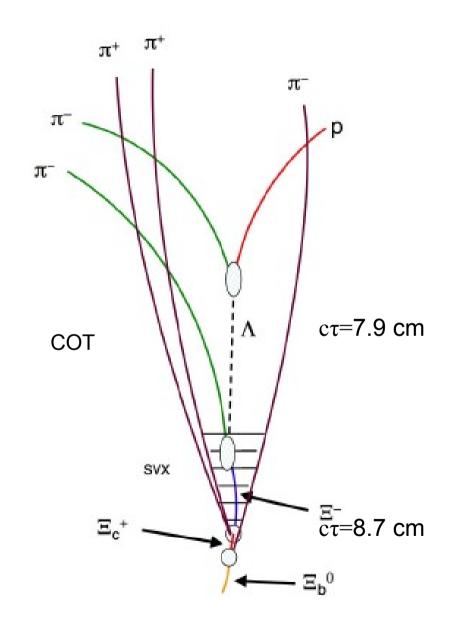

This won't work for the $\Xi_{\rm b}^{\ 0}$ ($\pi^{\rm 0}$ in the decay chain)

Instead, use decays into Ξ_c .

We look **simultaneously** for $\Xi_b^{\ 0}$ and $\Xi_b^{\ -}$. Combined search uses the established $\Xi_b^{\ -}$ state as a check on the $\Xi_b^{\ 0}$

$$\Xi_{
m b} o \ \Xi_{
m c} \ \pi^-$$
 with $\Xi_{
m c} o \Xi^- \pi^+ (\pi^+)$ and $\Xi^- o \Lambda \pi^-$ and $\Lambda o p \pi^-$

with
$$\Xi_c^{\ 0} \to \Xi^-\pi^+$$
 from the $\Xi_b^{\ -}$ and $\Xi_c^{\ +} \to \Xi^-\pi^+\pi^+$ from the $\Xi_b^{\ 0}$



Search methodology

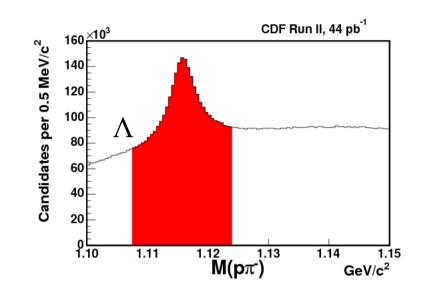
$$\Xi_{\rm b} \to \ \Xi_{\rm c} \ \pi^- \qquad \text{with} \ \Xi_{\rm c} \to \Xi^- \pi^+ (\pi^+)$$
 and
$$\Xi^- \to \Lambda \pi^-$$
 and
$$\Lambda \to p \pi^-$$

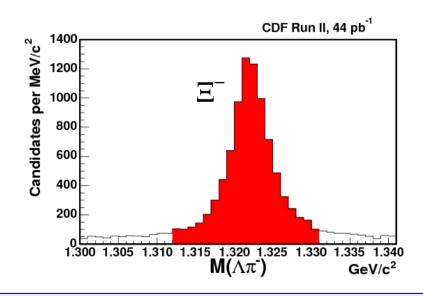
Method:

- reconstruct the Λ
- link it with a π^- to form a Ξ^- put silicon hits on the Ξ^-
- link this with $\pi^{\scriptscriptstyle +}$ ($\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle +}$) to form $\Xi_{\scriptscriptstyle c}^{0}$ ($\Xi_{\scriptscriptstyle c}^{+}$)
- link this with a π^- to form a Ξ_b^- (Ξ_b^0)

Technical procedure

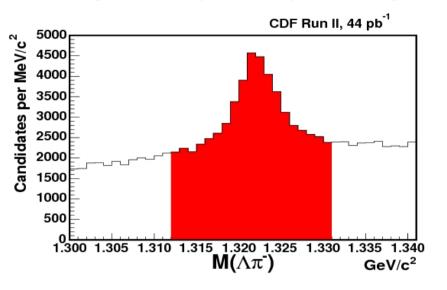
At each stage, it is necessary to optimise signal, minimise backgrounds. Checks were made against known signals.

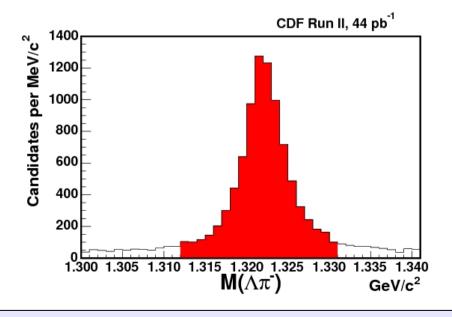

Λ reconstruction:


use pairs of tracks with p_T > 0.4 GeV/c
in CDF COT
require good vertex
proton = higher momentum track
(PID not used)
total flight distance > 1 cm (in xy plane)
(removes badly measured vtx. tracks)

Ξ^- reconstruction:

combine Λ candidates with pion tracks, in a fit constraining Λ mass and good $\Lambda\pi$ intersection.


 Λ flight distance from Ξ^- decay vtx. > 1 cm. Ξ^- flight distance from primary vtx. > 1 cm. Require Si detector hits on Ξ^- . Refit.



Silicon hits

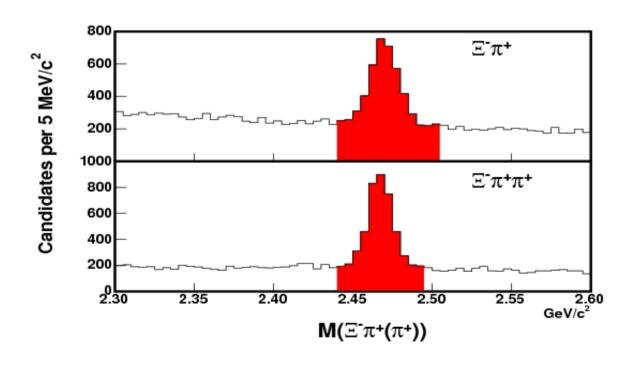
Improvement in Ξ signal/background by including silicon detector hits on it.

Without

With Si hits

Technical procedure

Ξ_{c} reconstruction:


Combine Ξ^- with one (two) π^+ tracks with >2 silicon detector hits $p_{\tau} > 2$ GeV/c impact parameter $|d_0| > 100$ µm

Extrapolate Ξ^- direction, fit to vertex with pion(s), applying mass constraints The combination must have

$$p_T > 4 \text{ GeV/c}$$

ct > 100 μ m

Event yields: Ξ_c^0 2110±70

$$\Xi_c^+$$
 3048±67

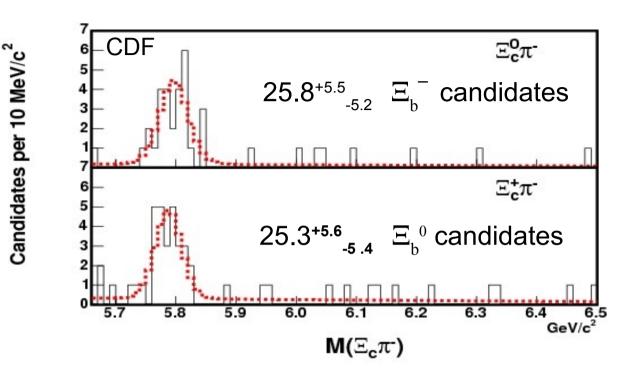
Final Ξ_{b} combination

Combine the Ξ_c candidates with further π^- tracks in the event to form Ξ_b candidates. These must satisfy selection criteria based on previous CDF studies:

 $p_{\scriptscriptstyle T}$ > 6 GeV/c (for good modelling of system in CDF) a constrained vertex fit including all the known baryon masses, using the extrapolated $\Xi_{\scriptscriptstyle c}$ direction pointing towards primary vertex

-2σ < t < 3τ +2σ for the decay time t of the
$$\Xi_c$$
 candidate (based on a study of $\Lambda_b \rightarrow \Lambda_c^+ \pi^-$ events) (Nb. decay distances of Ξ_c^+ , Ξ_c^0 are 440 μm, 110μm .)

Note: the trigger particles are this π^- and one of the π^+ in the $\Xi_{\rm c..}$ This enables the other selections to be applied without bias.


Mass fit of final combinations

Red histograms = results of unbinned likelihood fit to peak + bgd.

$$\Xi_{\rm b}^{-}$$
 p = 3.9x10⁻¹²

$$\Xi_{\rm b}^{0}$$
 p = 3.6x10⁻¹²

Both peaks > 6.8σ equivalent statistical significance.

Systematics estimated by comparing other measured masses with standard values. Momentum scale and resolution were the biggest effects.

Fitted mass of
$$\Xi_{b}^{0} = 5787.8 \pm 5.0 \text{ (stat)} \pm 1.3 \text{ (sys)} \text{ MeV}$$

in agreement with theoretical expectations

Fitted mass of
$$\Xi_h^- = 5796.7 \pm 5.1$$
 (stat) ± 1.4 (sys) MeV

in agreement with earlier CDF Phys. Rev. D 80 072003 (2009)

Mass difference:
$$m(\Xi_b^-) - m(\Xi_b^0) = 3.1 \pm 5.6(stat) \pm 1.3 (sys) MeV/c^2$$

using the earlier CDF Ξ_b^- mass 5790.9±2.6±0.8 MeV/c²

Conclusions

Using 4.2 fb⁻¹ of data in pp collisions at the Tevatron, CDF have observed

the
$$\Xi_b^{\ 0}$$
 baryon, the $\Xi_b^{\ -}$ baryon in its $\Xi_c^{\ -}\pi^-$ decay mode.

Both are first measurements.

ArXiv 1107.4015

Mass of $\Xi_{h}^{0} = 5787.8 \pm 5.0 \text{ (stat)} \pm 1.3 \text{ (sys)} \text{ MeV}$

Backup

Breakdown of systematic uncertainties on $\Xi_{\rm b}$ mass measurement

	Ξb¯		Ξ _b ⁰	
Ξ _c ^{0,+} mass	0.34	-0.8	0.4	-0.6
Momentum Scale	0.5	-0.5	0.5	-0.5
Resolution Model	1.4	-1.4	1.4	-1.4
Total	1.5	-1.7	1.5	-1.6