Long-Distance Contribution to $\Delta\Gamma_s$ in the B_{s} - B_{s} System

Chun-Khiang Chua, Wei-Shu Hou, Chia-Hsien Shen

$$a_{s'}$$
 and $\Gamma_{12,s}$

Motivated by D0 dimuon asymmetry:

Two-body contribution to $\Delta\Gamma_s$

Mode(f)	$\mathcal{B}(\bar{B}_{s,(u)} \to f) \ (\%)$ data	$\mathcal{B}(\bar{B}_s \to f) \ (\%)$ this work	$\Delta\Gamma_f/\Gamma_s$ (%) this work
$D_s \bar{D}_s$	$1.04 \pm 0.35 \ (1.00 \pm 0.17)$	$1.4 \pm 0.3 \pm 0.3$	$2.7 \pm 0.6 \pm 0.6$
$D_s^* \bar{D}_s + D_s \bar{D}_s^*$	$2.75 \pm 1.08 \ (1.58 \pm 0.33)$	$1.8\pm0.4\pm0.4$	$3.6\pm0.8\pm0.8$

• a_{sl} is related to and bounded by $\Gamma_{12,s}$

 $\Gamma_{12,s}$ needs to be enhanced at least ×3

Transition

• $|\Delta\Gamma_s/\Gamma_s(f)| \le 2\sqrt{Br(\overline{B}_s \to f)Br(B_s \to f)}$ • $D_{s}^{(*)}\overline{D}_{s}^{(*)}$ results agree with early work • P-wave D_s^{**} contribution is negligible (due to mismatch and cancelation) • $D_{sI}(2700)$ contribution is non-negligible (broad width \Rightarrow consider in 3-body case)

$D_s^* \bar{D}_s^* = 3.08 \pm 1.49 \\ (1.71 \pm 0.24)$		49 (.24)	$2.3 \pm 0.5 \pm$	0.5	$3.8\pm0.8\pm0.8$
$D_s^{(*)}ar{D}_s^{(*)}$	4.9 ± 1.4		$5.5 \pm 1.2 \pm$	1.1	$10.2 \pm 2.2 \pm 2.1$
	6.9 ± 2.3				
	4.0 ± 1.5				
	$(4.29 \pm 0$.74)			
$D_s^{(*)}\bar{D}_s^{**}, \ D_s^{**}\bar{D}_s^{(*)}$	$^{*)}, D_s^{**}\bar{D}_s^{**}$ N/A		$2.6\pm0.7\pm$	0.5	$0.2\pm0.3\pm0.04$
Mode(f)	$\mathcal{B}(\bar{B}_s \to f) \ (\%)$	$\mathcal{B}(B_s$ -	$\rightarrow f) \ (\%)$	$\Delta\Gamma$	$\Gamma_f/\Gamma_s~(\%)$
$D_s \bar{D}_{sJ}(2700)$	$0.44 \pm 0.18 \pm 0.09$	$0.02 \pm$	0.01 ± 0.01	0.2	$1\pm0.08\pm0.04$
$D_s^* \bar{D}_{sJ}(2700)$	$2.0\pm0.8\pm0.4$	$0.08 \pm$	0.03 ± 0.02	0.7	$3\pm0.27\pm0.15$
$D_s^{(*)} \bar{D}_{sJ}(2700)$	$2.5\pm1.0\pm0.5$	$0.11 \pm$	0.03 ± 0.02	1.9	$\pm \ 0.7 \pm 0.4$ $^{\rm a}$
$D_s^{**}\bar{D}_{sJ}(2700)$	$0.14 \pm 0.08 \pm 0.03$	$0.02 \pm$	0.07 ± 0.01	0.0	$8 \pm 0.03 \pm 0.02$ ^a

^a The contribution from CP conjugate modes \overline{f} is included.

Three-Body Contribution to $\Delta\Gamma_{c}$

Three Body Contribution to $\Delta\Gamma_s$

Scenario I (I'):							
	Pole Contribution Only						
	Modes with \bar{K}			Mod	les with \bar{K}^*		
Mode(f)	$\mathcal{B}_{\mathcal{J}}(\bar{B}_s \to f)(\%) \mathcal{B}_{\mathcal{T}}(B_s \to f)(\%)$	$\Delta\Gamma_f/\Gamma_s(\%)$	Mode(f)	$\mathcal{B}_{\mathcal{J}}(\bar{B}_s \to f)(\%)$	$\mathcal{B}_{\mathcal{T}}(B_s \to f)(\%)$	$\Delta\Gamma_f/\Gamma_s(\%)$	
$D_s \bar{D}^0 K^-$	$\begin{array}{c} 0.19 \pm 0.12 \pm 0.04 & 0.04 \pm 0.02 \pm 0.01 \\ (0.06 \pm 0.03 \pm 0.01) & (0.03 \pm 0.02 \pm 0.01) \end{array}$	$\begin{array}{c} 0.17 \pm 0.10 \pm 0.03 \\ (0.09 \pm 0.04 \pm 0.02) \end{array}$	$D_s \bar{D}^0 K^{*-}$	$(0.07 \pm 0.03 \pm 0.01)$	$(0.03 \pm 0.01 \pm 0.01)$	$(0.08 \pm 0.04 \pm 0.02)$	
$D_s D^- \bar{K}^0$	$\begin{array}{l} 0.19 \pm 0.12 \pm 0.04 & 0.04 \pm 0.02 \pm 0.01 \\ (0.05 \pm 0.03 \pm 0.01) & (0.03 \pm 0.02 \pm 0.01) \end{array}$	$\begin{array}{c} 0.16 \pm 0.09 \pm 0.03 \\ (0.08 \pm 0.04 \pm 0.02) \end{array}$	$D_s D^- \bar{K}^{*0}$	$(0.06 \pm 0.03 \pm 0.01)$	$(0.03 \pm 0.01 \pm 0.01)$	$(0.08 \pm 0.04 \pm 0.02)$	
$D_s^* \bar{D}^0 K^-$	$\begin{array}{c} 0.64 \pm 0.43 \pm 0.13 & 0.09 \pm 0.05 \pm 0.02 \\ (0.07 \pm 0.03 \pm 0.01) & (0.06 \pm 0.03 \pm 0.01) \end{array}$	$\begin{array}{c} 0.38 \pm 0.23 \pm 0.08 \\ (0.12 \pm 0.05 \pm 0.03) \end{array}$	$D_s^* \bar{D}^0 K^{*-}$	$(0.04 \pm 0.02 \pm 0.01)$	$(0.03 \pm 0.02 \pm 0.01)$	$(0.07 \pm 0.03 \pm 0.01)$	
$D_s^* D^- \bar{K}^0$	$\begin{array}{ll} 0.62 \pm 0.42 \pm 0.13 & 0.09 \pm 0.05 \pm 0.02 \\ (0.07 \pm 0.03 \pm 0.01) & (0.06 \pm 0.03 \pm 0.01) \end{array}$	$\begin{array}{c} 0.37 \pm 0.22 \pm 0.08 \\ (0.11 \pm 0.05 \pm 0.02) \end{array}$	$D_s^* D^- \bar{K}^{*0}$	$(0.04 \pm 0.02 \pm 0.01)$	$(0.03 \pm 0.02 \pm 0.01)$	$(0.07 \pm 0.03 \pm 0.02)$	
$D_s \bar{D}^{*0} K^-$	$\begin{array}{c} 0.30 \pm 0.18 \pm 0.06 & 0.09 \pm 0.05 \pm 0.02 \\ (0.17 \pm 0.08 \pm 0.04) & (0.08 \pm 0.04 \pm 0.02) \end{array}$	$\begin{array}{c} 0.31 \pm 0.21 \pm 0.06 \\ (0.23 \pm 0.11 \pm 0.05) \end{array}$	$D_s \bar{D}^{*0} K^{*-}$	$(0.18 \pm 0.08 \pm 0.04)$	$(0.08 \pm 0.04 \pm 0.02)$	$(0.24 \pm 0.12 \pm 0.05)$	
$D_s D^{*-} \bar{K}^0$	$\begin{array}{l} 0.29 \pm 0.18 \pm 0.06 & 0.09 \pm 0.04 \pm 0.02 \\ (0.17 \pm 0.08 \pm 0.04) & (0.08 \pm 0.04 \pm 0.02) \end{array}$	$\begin{array}{c} 0.30 \pm 0.20 \pm 0.06 \\ (0.22 \pm 0.11 \pm 0.05) \end{array}$	$D_s D^{*-} \bar{K}^{*0}$	$(0.17 \pm 0.08 \pm 0.04)$	$(0.08 \pm 0.04 \pm 0.02)$	$(0.24 \pm 0.11 \pm 0.05)$	
$D_s^* \bar{D}^{*0} K^-$	$\begin{array}{c} 0.89 \pm 0.59 \pm 0.18 & 0.17 \pm 0.09 \pm 0.03 \\ (0.14 \pm 0.07 \pm 0.03) & (0.11 \pm 0.05 \pm 0.02) \end{array}$	$\begin{array}{c} 0.65 \pm 0.39 \pm 0.14 \\ (0.23 \pm 0.11 \pm 0.05) \end{array}$	$D_s^* \bar{D}^{*0} K^{*-}$	$(0.05 \pm 0.02 \pm 0.01)$	$(0.04 \pm 0.02 \pm 0.01)$	$(0.08 \pm 0.04 \pm 0.02)$	
$D_s^* D^{*-} \bar{K}^0$	$\begin{array}{ccc} 0.86 \pm 0.57 \pm 0.18 & 0.16 \pm 0.09 \pm 0.03 \\ (0.14 \pm 0.06 \pm 0.03) & (0.10 \pm 0.05 \pm 0.02) \end{array}$	$\begin{array}{c} 0.64 \pm 0.38 \pm 0.13 \\ (0.22 \pm 0.10 \pm 0.05) \end{array}$	$D_s^* D^{*-} \bar{K}^{*0}$	$0(0.05\pm0.02\pm0.01)$	$(0.03 \pm 0.02 \pm 0.01)$	$(0.08 \pm 0.04 \pm 0.02)$	
Total		$5.9 \pm 3.6 \pm 1.2^{\rm a} \\ (2.6 \pm 1.2 \pm 0.5)^{\rm a}$	Total			$(1.9 \pm 0.9 \pm 0.4)^{\mathrm{a}}$	

Current-produced

Current-produced Dominated by $D_{s,t}$

Dominated by $D_s^{(*)}$

• Need to reproduce existing data of $B_{\mu d}$ decays first:

Scenario I: Use pole model with $D_s^{(*)}$ and D_{sI} poles Scenario II: Include NR effect in current-produced DK

Comparing to experimental rates of SU(3) related current-produced modes

• Experimental results can be reasonably reproduced:

Measurement	BaBar Data(%)	Belle Data(%)	Our Results (%)		Remarks			
			Scenario I (I')	Scenario II				
			Pole model with D_{sJ}	Pole model+NR				
			(without D_{sJ})					
Category 1: $\overline{D}\overline{K}$ in current with $\overline{B} \to D$ transition								
$\mathcal{B}(\bar{B}_u \to D_u \bar{D}_{sJ} (2700)^-) \times \mathcal{B}(\bar{D}_{sJ} (2700)^- \to \bar{D}^0 K^-)$	N/A	$0.113_{-0.040}^{+0.026}$	$0.12 \pm 0.08 \pm 0.03$ (0)	$0.12 \pm 0.08 \pm 0.03$	Input for Scenario I.			
$\mathcal{B}(\bar{B}_u \to D_u \bar{D}^0 K^-)$	0.131 ± 0.014	0.222 ± 0.033	$\sim 0.23 \ (\sim 0.07)$	~ 0.11	Color-suppressed di- agram neglected.			
$\mathcal{B}(\bar{B}_d \to D_d \bar{D}^0 K^-)$	0.107 ± 0.011	N/A	$0.22 \pm 0.14 \pm 0.05 \\ (0.06 \pm 0.03 \pm 0.01)$	$0.10^{+0.23}_{-0.02} \pm 0.02$	Input for Scenario II.			
$\mathcal{B}(\bar{B}_d \to D_d \bar{D}_{sJ} (2700)^-) \times \mathcal{B}(\bar{D}_{sJ} (2700)^- \to \bar{D}^0 K^-)$	N/A	N/A	$\begin{array}{c} 0.11 \pm 0.07 \pm 0.02 \\ (0) \end{array}$	$0.11 \pm 0.07 \pm 0.02$				
	Catego	ory 2: $\overline{D}\overline{K}$ in cur	rent with $\bar{B} \to D^*$ trans	sition				
$\mathcal{B}(\bar{B}_d \to D_d^* \bar{D}^0 K^-)$	0.247 ± 0.021	N/A	$egin{aligned} 0.67 \pm 0.45 \pm 0.14 \ (0.07 \pm 0.03 \pm 0.01) \end{aligned}$	$0.32^{+0.75}_{-0.13} \pm 0.07$	Input for Scenario II.			
$\mathcal{B}(\bar{B}_d \to D_d^* \bar{D}_{sJ} (2700)^-) \times \mathcal{B}(\bar{D}_{sJ} (2700)^- \to \bar{D}^0 K^-)$	N/A	N/A	$0.50 \pm 0.33 \pm 0.11$ (0)	$0.50 \pm 0.33 \pm 0.11$				
	Catego	ory 3: $\overline{D}^*\overline{K}$ in cu	rrent with $\bar{B} \to D$ trans	sition				
$\mathcal{B}(\bar{B}_d \to D_d \bar{D}^{*0} K^-)$	0.346 ± 0.041	N/A	$egin{array}{l} 0.35 \pm 0.21 \pm 0.07 \ (0.20 \pm 0.10 \pm 0.04) \end{array}$	$0.35 \pm 0.21 \pm 0.07$				
$\mathcal{B}(\bar{B}_d \to D_d \bar{D}_{sJ} (2700)^-) \times \mathcal{B}(\bar{D}_{sJ} (2700)^- \to \bar{D}^{*0} K^-)$	N/A	N/A	$\begin{array}{c} 0.11 \pm 0.07 \pm 0.02 \\ (0) \end{array}$	$0.11 \pm 0.07 \pm 0.02$				
	Categor	ry 4: $\overline{D}^*\overline{K}$ in cur	rrent with $\bar{B} \to D^*$ tran	sition				
$\mathcal{B}(\bar{B}_d \to D_d^* \bar{D}^{*0} K^-)$	1.060 ± 0.092	N/A	$0.94 \pm 0.62 \pm 0.20 \ (0.15 \pm 0.08 \pm 0.03)$	$0.94 \pm 0.62 \pm 0.20$				
$\mathcal{B}(\bar{B}_d \to D_d^* \bar{D}_{sJ} (2700)^-) \times \mathcal{B}(\bar{D}_{sJ} (2700)^- \to D^{*0} K^-)$	N/A	N/A	$0.52 \pm 0.33 \pm 0.11$ (0)	$0.52 \pm 0.33 \pm 0.11$				
$\mathcal{B}(\bar{B}_d \to D_d^* \bar{D}^{*+} \bar{K}^0)$	0.826 ± 0.080	N/A	$\sim 0.91 \ (\sim 0.15)$	~ 0.91	Color-suppressed di- agram neglected.			
$\mathcal{B}(\bar{B}_d \to D_d^* \bar{D}^{*+} K_S^0)$	0.44 ± 0.08	0.34 ± 0.08	$\sim 0.46 \ (\sim 0.07)$	~ 0.46	Color-suppressed di- agram neglected.			

The contribution from *CP* conjugate modes *J* is included

Scenario II:

Pole contribution + NR in $\overline{D}\overline{K}$ time-like form factors

Modes with \bar{K}			Modes with \bar{K}^*				
Mode(f)	$\mathcal{B}_{\mathcal{J}}(\bar{B}_s \to f)(\%)$	$\mathcal{B}_{\mathcal{T}}(B_s \to f)(\%)$	$\Delta\Gamma_f/\Gamma_s(\%)$	Mode(f)	$\mathcal{B}_{\mathcal{J}}(\bar{B}_s \to f)(\%)$	$\mathcal{B}_{\mathcal{T}}(B_s \to f)(\%)$	$\Delta\Gamma_f/\Gamma_s(\%)$
$D_s \bar{D}^0 K^-$	$0.09^{+0.22}_{-0.02} \pm 0.02$	$0.04 \pm 0.02 \pm 0.01$	$0.08 \pm 0.15 \pm 0.01$	$D_s \bar{D}^0 K^{*-}$	$(0.07 \pm 0.03 \pm 0.01)$	$(0.03 \pm 0.01 \pm 0.01)$	$(0.08 \pm 0.04 \pm 0.02)$
$D_s D^- \bar{K}^0$	$0.09^{+0.22}_{-0.02}\pm0.02$	$0.04 \pm 0.02 \pm 0.01$	$0.07 \pm 0.13 \pm 0.01$	$D_s D^- \bar{K}^{*0}$	$(0.06\pm 0.03\pm 0.01)$	$(0.03\pm 0.01\pm 0.01)$	$(0.08 \pm 0.04 \pm 0.02)$
$D_s^* \bar{D}^0 K^-$	$0.31^{+0.74}_{-0.13}\pm0.13$	$0.09 \pm 0.05 \pm 0.02$	$0.11 \pm 0.38 \pm 0.02$	$D_s^* \bar{D}^0 K^{*-}$	$(0.04 \pm 0.02 \pm 0.01)$	$(0.03\pm 0.02\pm 0.01)$	$(0.07 \pm 0.03 \pm 0.01)$
$D_s^* D^- \bar{K}^0$	$0.29^{+0.71}_{-0.13} \pm 0.13$	$0.09 \pm 0.05 \pm 0.02$	$0.11 \pm 0.38 \pm 0.02$	$D_s^* D^- \bar{K}^{*0}$	$(0.04 \pm 0.02 \pm 0.01)$	$(0.03\pm 0.02\pm 0.01)$	$(0.07 \pm 0.03 \pm 0.02)$
$D_s \bar{D}^{*0} K^-$	$0.30 \pm 0.18 \pm 0.06$	$0.09 \pm 0.05 \pm 0.02$	$0.31 \pm 0.21 \pm 0.06$	$D_s \bar{D}^{*0} K^{*-}$	$(0.18 \pm 0.08 \pm 0.04)$	$(0.08\pm 0.04\pm 0.02)$	$(0.24 \pm 0.12 \pm 0.05)$
$D_s D^{*-} \bar{K}^0$	$0.29 \pm 0.18 \pm 0.06$	$0.09 \pm 0.04 \pm 0.02$	$0.30 \pm 0.20 \pm 0.06$	$\left\ D_s D^{*-} \bar{K}^{*0} \right\ $	$(0.17 \pm 0.08 \pm 0.04)$	$(0.08\pm 0.04\pm 0.02)$	$(0.24 \pm 0.11 \pm 0.05)$
$D_s^* \bar{D}^{*0} K^-$	$0.89 \pm 0.59 \pm 0.18$	$0.17 \pm 0.09 \pm 0.03$	$0.65 \pm 0.39 \pm 0.14$	$D_s^* \bar{D}^{*0} K^{*-}$	$(0.05 \pm 0.02 \pm 0.01)$	$(0.04\pm 0.02\pm 0.01)$	$(0.08 \pm 0.04 \pm 0.02)$
$D_s^* D^{*-} \bar{K}^0$	$0.86 \pm 0.57 \pm 0.18$	$0.16 \pm 0.09 \pm 0.03$	$0.64 \pm 0.38 \pm 0.13$	$\left\ D_s^* D^{*-} \bar{K}^{*0} \right\ $	$0(0.05\pm0.02\pm0.01)$	$(0.03\pm 0.02\pm 0.01)$	$(0.08 \pm 0.04 \pm 0.02)$
Total			$4.5 \pm 4.4 \pm 0.9^{\rm a}$	Total			$(1.9 \pm 0.9 \pm 0.4)^{\mathrm{a}}$

- Our results agree with the SD ones.
- Enhancement in $\Delta \Gamma_s$ if confirmed must have NP origin.
- Three-body contribution cannot be neglected.
- Predictions on 3-body decay rates can be checked.

