Long－Distance Contribution to $\Delta \Gamma_{s}$ in the $\boldsymbol{B}_{s}-\overline{\boldsymbol{B}}_{s}$ System

Chun－Khiang Chua，Wei－Shu Hou，Chia－Hsien Shen

$a_{s /}$ and $\Gamma_{12, s}$

－Motivated by D0 dimuon asymmetry：

－$a_{s l}$ is related to and bounded by $\Gamma_{12, s}$
$a_{s l}^{s}=\frac{\Delta \Gamma_{s}}{\Delta m_{s}} \tan \phi_{s}=\frac{2\left|\Gamma_{12, s}\right|}{\Delta m_{s}} \sin \phi_{s}$
$\Gamma_{12, s}$ needs to be enhanced at least $\times 3$

Two－body contribution to $\Delta \Gamma_{s}$ $\Gamma_{12, s}=\sum_{f} \Gamma_{12 f}=\frac{1}{2 m_{B s}} \sum_{f}\left\langle B_{s}\right| H_{W}|f\rangle\langle f| H_{W}\left|\bar{B}_{s}\right\rangle$ $\longrightarrow{ }_{\bar{B}}^{\longrightarrow}$ －$\left|\Delta \Gamma_{s} / \Gamma_{s}(f)\right| \leq 2 \sqrt{\operatorname{Br}\left(\bar{B}_{s} \rightarrow f\right) \operatorname{Br}\left(B_{s} \rightarrow f\right)}$
－$D_{s}^{(*)} \bar{D}_{s}^{(*)}$ results agree with early work
－P－wave $D_{s}^{* *}$ contribution is negligible （due to mismatch and cancelation）
－$D_{s J}(2700)$ contribution is non－negligible （broad width \Rightarrow consider in 3－body case）

Mode（f）	$\mathcal{B}\left(\bar{B}_{s,(u)} \rightarrow f\right)(\%)$ data	$\mathcal{B}\left(\bar{B}_{s} \rightarrow f\right)(\%)$ this work	$\Delta \Gamma_{f} / \Gamma_{s}(\%)$ this work
$D_{s} \bar{D}_{s}$	1.04 ± 0.35	$1.4 \pm 0.3 \pm 0.3$	$2.7 \pm 0.6 \pm 0.6$
	(1.00 ± 0.17)		
$D_{s}^{*} \bar{D}_{s}+D_{s} \bar{D}_{s}^{*}$	2.75 ± 1.08	$1.8 \pm 0.4 \pm 0.4$	$3.6 \pm 0.8 \pm 0.8$
	(1.58 ± 0.33)		
$D_{s}^{*} \bar{D}_{s}^{*}$	3.08 ± 1.49	$2.3 \pm 0.5 \pm 0.5$	$3.8 \pm 0.8 \pm 0.8$
	(1.71 ± 0.24)		
$D_{s}^{(*)} \bar{D}_{s}^{(*)}$	4.9 ± 1.4	$5.5 \pm 1.2 \pm 1.1$	$10.2 \pm 2.2 \pm 2.1$
	6.9 ± 2.3		
	4.0 ± 1.5		
	(4.29 ± 0.74)		

$D_{s}^{(*)} \bar{D}_{s}^{* *}, D_{s}^{* *} \bar{D}_{s}^{(*)}, D_{s}^{* *} \bar{D}_{s}^{* *} \mathrm{~N} / \mathrm{A}$	$2.6 \pm 0.7 \pm 0.5$	$0.2 \pm 0.3 \pm 0.04$

\section*{$\operatorname{Mode}(\mathrm{f}) \quad \mathcal{B}\left(\bar{B}_{s} \rightarrow f\right)(\%) \quad \mathcal{B}\left(B_{s} \rightarrow f\right)(\%) \quad \Delta \Gamma_{f} / \Gamma_{s}(\%)$ $\bar{D}_{s} \bar{D}_{s J}(2700) \quad 0.44 \pm 0.18 \pm 0.09 \quad 0.02 \pm 0.01 \pm 0.01 \quad 0.21 \pm 0.08 \pm 0.04$} $\begin{array}{llll}D_{s}^{*} \bar{D}_{s J}(2700) & 2.0 \pm 0.8 \pm 0.4 & 0.08 \pm 0.03 \pm 0.02 & 0.73 \pm 0.27 \pm 0.15\end{array}$ $D_{s}^{(*)} \bar{D}_{s J}(2700) 2.5 \pm 1.0 \pm 0.5 \quad 0.11 \pm 0.03 \pm 0.02{ }^{-} \overline{1} . \overline{9} \pm \overline{0} \overline{0} \overline{7}^{-} \pm \overline{0} . \overline{4}^{-\bar{a}^{-}}$ | $D_{s}^{* *} \bar{D}_{s J}(2700)$ | $0.14 \pm 0.08 \pm 0.03$ | $0.02 \pm 0.07 \pm 0.01$ | $0.08 \pm 0.03 \pm 0.02^{a^{a}}$ |
| :--- | :--- | :--- | :--- |

Three－Body Contribution to $\Delta \Gamma_{s}$

－Need to reproduce existing data of $B_{u, d}$ decays first：

Scenario I：Use pole model with $D_{s}{ }^{(*)}$ and $D_{s J}$ poles

 Scenario II：Include NR effect in current－produced $\bar{D} \bar{K}$－Experimental results can be reasonably reproduced：

Conclusion

－Final results

－Our results agree with the SD ones．
－Enhancement in $\Delta \Gamma_{s}$ if confirmed must have NP origin．
－Three－body contribution cannot be neglected．
－Predictions on 3－body decay rates can be checked．

