

A search for the Higgs boson in $H \rightarrow ZZ^{(*)}$ mode with the CMS detector

Roberto Salerno¹⁾ on behalf of CMS collaboration

¹⁾ Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3

SM Higgs production

SM Higgs decay modes

Decay branching ratio

Cross section x branching ratio

CMS detector

Physical objects

<u>Leptons</u>

 $H \rightarrow ZZ \rightarrow IIqq/vv:$

standard leptons selection for Z measurement $H \rightarrow ZZ^{(*)} \rightarrow IIII$:

low p_T leptons with high selection efficiency

Missing Transverse Energy

Particle Flow MET

Jets

Particle Flow Jets anti-k_T algorithm (R = 0.5)

<u>b-tagging</u>

Track Counting High Efficiency algorithm uses displaced tracks in a jet to compute the discriminator

	Barrel low p _T -high p _T	Endcap low p⊤-high p⊤
electron	(95-97)%	(90-95)%
muon	(97-98)%	(98-99)%

reconstruction+identification in $H \rightarrow ZZ^{(*)} \rightarrow IIII$

$H \rightarrow ZZ \rightarrow l^+ l^- q \bar{q}$

REF: CMS-PAS-HIG-11-006

Large Yields

✓ Exploits very large BR(Z→qq) = 70%
 ✓ Full decay chain reconstructed

Challenge

✓ Large Z+jet background

✓ Limited resolution coming from jets

Background

✓ Resonant: Z+jet
 ✓ Non-Resonant: ttbar/tW
 ✓ EWK: ZZ/WZ/WW

Good for exclusion and discovery

Sensitive to high mass Higgs boson: m_H [200-600] GeV/c²

Selection Procedure

Two Opposite-Sign Same-Flavor isolated leptons $p_{T,1/2}$ > 40/20 GeV/c & $|\eta_{\mu}|$ < 2.4 $|\eta_{e}|$ < 2.5 At least two jets $p_{T,1/2} > 30 \text{ GeV/c } |\eta_i| < 2.4$

Background suppression

 $70 < m_{\parallel} < 110 \text{ GeV/c}^2$ $75 < m_{ii} < 105 \text{ GeV/c}^2$

Angular Likelihood Discriminant

Quark-Gluon Likelihood Discriminant Tagging of b-flavor Three b-tag categories: 0/1/2 b jet

600

400

200

H→ZZ→l⁺ŀāqā

Estimation from the m _{jj} sidebands
$(60 < m_{jj} < 75 \text{ GeV/c}^2) \cup (105 < m_{jj} < 130 \text{ GeV/c}^2)$

$$N_{\rm bkg}(m_{\rm ZZ}) = N_{\rm sb}(m_{\rm ZZ}) \times \frac{N_{\rm bkg}^{\rm sim}(m_{\rm ZZ})}{N_{\rm sb}^{\rm sim}(m_{\rm ZZ})} = N_{\rm sb}(m_{\rm ZZ}) \times \alpha(m_{\rm ZZ})$$

	0 b-tag	l b-tag	2 b-tag	
μμϳϳ				
Back. from Data	286.4 ± 16.2	334.7± 18.2	20.3 ± 3.1	
Observed	307	352	30	
eejj				
Back. from Data	345.7 ± 17.8	376.4 ± 19.3	24.3 ± 3.7	
Observed	359	396	25	
Independently in each b-tag category				

Additional information on ttbar background using the mixed-flavor eµjj sample

Dominant Z+jet background is absent

Invariant Mass

Upper Limits

M_H [GeV] Higgs boson with a mass in the **226-445 GeV/c²** range is excluded at 95% CL but in two windows between 261-270 GeV/c² and 370-381 GeV/c²

400

450

300

350

250

Shape analysis:

σ_{95%} / σ_{SM}

20

18

16

14

12

10

8

 ✓ Signal parametrized with a Breit–Wigner convoluted with a Crystal-Ball
 ✓ Background parametrized with an empirical probability function normalized from data estimation (m_{jj} sideband)

500 550 600

L=1.0 fb⁻¹

 $H \rightarrow ZZ \rightarrow l^+ l \bar{\nu} \bar{\nu}$

REF: CMS-PAS-HIG-11-005

Large Yields \checkmark BR(ZZ \rightarrow IIVV) \sim 6xBR(ZZ \rightarrow IIII)

Challenge

✓ Looking for Z+MET signature
 ✓ Large Z+jet background
 ✓ No Higgs peak

Background ✓ Resonant: Z+jet ✓ Non-Resonant: ttbar/WW ✓ EWK: WZ/ZZ

Good for exclusion

Sensitive to high mass Higgs boson: m_H [250-600] GeV/c²

L=1.1 fb⁻¹

 $H \rightarrow ZZ \rightarrow l^+ l^- v \overline{v}$

Two Opposite-Sign Same-Flavor isolated leptons $p_{T,1/2} > 20 \text{ GeV/c } |\eta_{\mu}| < 2.4 |\eta_{e}| < 2.5 |m_{\parallel} - m_{Z}| < 15 \text{ GeV/c}^2$

Background suppression

Mass independent cuts: Veto events with a b-jet Veto events with a third lepton

Mass dependent cuts: Missing transverse energy (MET) MET-jet separation Transverse Mass (M_T)

Transverse Mass

Background estimation

Resonant (Z+jet) \rightarrow gamma+jetNon-Resonant (ttbar/WW) \rightarrow eµ final statesElectroweak (WZ/ZZ) \rightarrow MC

L=1.1 fb⁻¹

 $H \rightarrow ZZ \rightarrow l^{+} l^{-} v \overline{v}$

Upper Limits

L=1.1 fb⁻¹

$\frac{Cut \& Count analysis}{final discriminator M_T}$

Higgs Mass [GeV/c ²]	M _T [GeV/c²]
250	> 216 AND < 272
350	> 267 AND < 386
450	> 315
550	> 357

 $H \rightarrow ZZ^{(*)} \rightarrow l^+ l^- l^+ l^-$

Golden channel

- Clean experimental signature, four primary and isolated leptons
- ✓ Narrow resonance in 4 leptons invariant mass spectrum

Challenge

✓ Small Branching Ratio
 ✓ Low p⊤ leptons

Background

✓ Instrumental: Z+fakes
 ✓ Reducible: Zbb/ttbar/WZ
 ✓ Irreducible: ZZ^(*)

REF: CMS-PAS-HIG-11-004

Good for exclusion and discovery

Sensitive to whole mass Higgs boson range: m_H [110-600] GeV/c²

Selection Procedure

 $L=1.13 \text{ fb}^{-1}$ $H \rightarrow ZZ^{(*)} \rightarrow l^+ l^- l^+ l^-$

Selection Procedure

 $L=1.13 \text{ fb}^{-1}$ $H \rightarrow ZZ^{(*)} \rightarrow l^+l^-l^+l^-$

Reducible background suppression

- \checkmark Relative isolation on leptons
- ✓ Impact parameter on leptons

Minimal signal efficiency loss while preserving optimal phase space

Selection Procedure

19

 $H \rightarrow ZZ^{(*)} \rightarrow l^+l^-l^+l^-$

L=1.13 fb⁻¹

Kinematics (Z and Z*)

Low-mass/Baseline selection

✓ min(m_{Z2}) = 20 GeV/c²
to search for all Higgs mass hypotheses

High-mass/Two Zs "on-shell"

✓ min(m_{Z2}) = 60 GeV/c²
 to search for high Higgs mass hypotheses
 coincides with ZZ cross section measurement¹

Background from DATA

 $L=1.13 \text{ fb}^{-1}$ $H \rightarrow ZZ^{(*)} \rightarrow l^{+}l^{-}l^{+}l^{-}$

<u>Control of ZZ continuum</u> normalization to Z rates in DATA

<u>Control of reducible backgrounds</u> Relax flavor and charge requirements High impact parameter

<u>Control of instrumental backgrounds</u> Use fake rate measurements

Invariant Mass

L=1.13 fb⁻¹

 $H \rightarrow ZZ^{(*)} \rightarrow I^+ I^+ I^-$

Invariant Mass

The total cross section for a pair WW/WZ/ZZ bosons has been measured and found to be in agreement with the expectation from the Standard Model See CMS EWK di-boson talk in this conference for more details

Upper Limits

✓ Signal parametrized with a Breit–Wigner convoluted with a Crystal-Ball
 ✓ ZZ/reducible backgrounds parametrized by an empirical probability function, normalization from data

 $L=1.13 \text{ fb}^{-1}$

 $H \rightarrow Z Z^{(*)} \rightarrow I^+ I^+ I^-$

Conclusion

 \checkmark A search of the H boson in the ZZ mode has been performed for the first time in CMS

✓ The ZZ* decays into Ilqq, Ilvv and IIII (I = e, μ) have been measured and examined at $\sqrt{s} = 7$ TeV

✓ No evidence of a SM-like Higgs bosons has been found

✓ At $m_{41} > 100 \text{ GeV/c}^2$: 15 events observed, 14.4 ± 0.6 events expected At $m_{41} < 2 \times m_Z$: 6 events observed, 1.9 ± 0.1 events expected

✓ Upper limits are obtained at 95% CL on the cross section×B.R. for a Higgs boson with SM-like decays for masses in the range $110 < m_H < 600 \text{ GeV/c}^2$

✓ In the context of the Standard Model with a massive fourth fermion family, a Higgs boson with a mass in the ranges 138-162 GeV/c² and 178-550 GeV/c² is excluded at 95% C.L.

BACKUP

