



# Search for Higgs in $WW \rightarrow 2\ell 2v$

Dmytro Kovalskyi (UCSB/CERN) for CMS Collaboration



Higgs  $\rightarrow$  WW  $\rightarrow$  2l2v





- Higgs Signature:
  - 2 isolated leptons (electron or muon)
  - large missing energy
  - Three categories of events:
    - 0, I and 2 jets





#### Analysis Challenges





- No mass is reconstructed essentially a counting experiment
- Key selection requirements:
  - lepton pt>10 GeV with tight identification and isolation - QCD, Wjets
  - large missing transverse energy (MET) and Z veto - Drell-Yan
  - number of jet classification (Pt>30GeV) and b-quark veto - Top
  - kinematics  $(m_{ll}, d\phi)$  WW
- Final step selection requirements are optimized for different Higgs mass hypotheses



## Missing Energy with PileUp





- 2011 data differs from 2010:
  - ~8 interactions per bunch crossing
  - larger tails in the missing energy distribution
- Two different MET variables:
  - nominal calorimeter and tracker
  - only tracker based MET
    - not affected by pile up
- pfMET and trkMET are weakly correlated for backgrounds
  - use the smaller one for each event
  - minMet>40 (same flavor)
  - minMet>20 (opposite flavor)

### WW Background



- WW is an irreducible background one order of magnitude larger SM Higgs
- Kinematics is the main discriminator:
  - Iow mass dPhi, MII
    - for  $mH \le 130$  need to lower lepton  $pt \rightarrow larger Wjets background$
  - above 200GeV WW and Higgs harder to distinguish
- Use signal free events to calibrate WW yield



#### Other Backgrounds





- Top background top veto:
  - soft muons
  - b-jet tagging (including low pt)
- WZ/ZZ no extra leptons
- Conversions (Wjets, Wγ):
  - no missing hits in pixel detector
  - conversion pair veto





|       |                                                       | data | all bkg.       | $qq \rightarrow W^+W^-$          | $gg \rightarrow W^+W^-$ | $t\bar{t} + tW$                        | $W + \gamma$     |      |
|-------|-------------------------------------------------------|------|----------------|----------------------------------|-------------------------|----------------------------------------|------------------|------|
|       | 0-jet                                                 | 626  | $568.6\pm52.2$ | $349.7\pm30.3$                   | $17.2\pm1.6$            | $63.8 \pm 15.9$                        | $8.7\pm1.7$      |      |
|       | 1-jet                                                 | 334  | $316.0\pm24.7$ | $101.4\pm9.3$                    | $5.9\pm0.5$             | $141.1 \pm 14.1$                       | $2.4\pm0.8$      |      |
|       | 2-jet                                                 | 175  | $164.6\pm18.0$ | $22.1\pm2.0$                     | $1.1\pm0.1$             | 99.3 ± 9.9                             | $1.1\pm0.5$      |      |
|       | $WZ/ZZ$ not in $Z/\gamma^* \rightarrow \ell^+ \ell^-$ |      |                | $2^- \mid Z/\gamma^* \to \ell^+$ | $\ell^- + WZ + ZZ$      | $Z/\gamma^* \rightarrow \tau^+ \tau^-$ | -   W+           | iets |
| 0-jet | $8.5\pm0.9$                                           |      |                | 12.                              | $12.2 \pm 5.3$          |                                        | 106.9 ±          | 38.9 |
| 1-jet | $7.2\pm0.8$                                           |      |                | 10.5                             | $10.5\pm11.5$           |                                        | 1.2 $36.9 \pm 1$ |      |
| 2-jet | $1.5\pm0.2$                                           |      |                | 19.2                             | $19.2\pm13.5$           |                                        | 16.4 ±           | 6.4  |

#### • **Dominant contributions at WW selection level**:

- 0-jet: WW, Wjets, Top
- I-jet: WW, Top
- 2-jet:Top
- WW cross-section:
  - 55.3 ± 3.3 (stat.) ± 6.9 (syst.) ± 3.3 (lumi.) pb
  - Standard Model prediction is 43 ± 2 pb





| $m_{\rm H}[{\rm GeV}]$ | $p_{\rm T}^{\ell,{\rm max}}$ [GeV/c] | $p_{\rm T}^{\ell,{\rm min}}$ [GeV/c] | $m_{\ell\ell} [{ m GeV}/c^2]$ | $\Delta \phi_{\ell\ell}$ [dg.] | $m_T^{\ell\ell E_T^{ m miss}}$ [GeV/ $c^2$ ] |
|------------------------|--------------------------------------|--------------------------------------|-------------------------------|--------------------------------|----------------------------------------------|
|                        | >                                    | >                                    | <                             | <                              | [.]                                          |
| 130                    | 25                                   | 10                                   | 45                            | 90                             | [75,125]                                     |
| 150                    | 27                                   | 25                                   | 50                            | 90                             | [80,150]                                     |
| 160                    | 30                                   | 25                                   | 50                            | 60                             | [90,160]                                     |
| 180                    | 36                                   | 25                                   | 60                            | 70                             | [120,180]                                    |
| 200                    | 40                                   | 25                                   | 90                            | 100                            | [120,200]                                    |
| 300                    | 70                                   | 25                                   | 200                           | 175                            | [120,300]                                    |

- **Discriminating variables**:
  - di-lepton mass
  - angle between two leptons
  - lepton pt
  - transverse mass (dilepton + MET)
  - For 2-jets: |Δη|>3.5, mjj>450Gev

#### • Background estimation:

- from data at Higgs selection level: Wjets, Drell-Yan, WW
- from data at WW selection level:Top
- from Monte Carlo:WZ, ZZ, Wγ,
   Drell-Yan→ττ



#### Multivariate Analysis



- MVA Boosted Decision
   Tree
- Same inputs as cut based plus a few more
- Use binned MVA output to look for signal - more optimal use of information
- The expected exclusion range with I.I/fb of data:
  - Cut based: [140,195] GeV
  - MVA based: [130,200] GeV



#### Systematics



- The dominant systematic effects are associated with the dominant background estimation:
  - **Wjets**: 36%
  - **Drell-Yan**: 60%
  - **Top**: 25%
  - **WW**: 15%-30%
- Most of these uncertainties are statistical in nature and will get smaller with more data
- Theoretical uncertainties very in large range, but they are not dominant at the moment



#### Results





Cut based analysis

MVA based analysis

- The exclusion limits are extracted following CLs-LHC procedure
- Green/Yellow 68%/95% local probability for background to fluctuate
  - no "look elsewhere" effect corrections
  - Mass resolution is poor: ~30GeV
- Observed exclusion region: [150,193]







- CMS searched for the Standard Model Higgs in WW fully leptonic final state with 1.1/fb of data collected in 2011
- Backgrounds is a challenging issue for Higgs search in WW final state. Lots of work was done to get the best result.
- The observed upper limit is found to be [150,193] GeV at 95% C.L.
- LHC delivers data fast, new results can be expected as soon as in a month from now in time for Lepton-Photon conference

# Backup Slides



#### **CMS** Detector







## Missing Energy and Drell Yan



- MET is computed as a negative vector sum of calorimeter energy depositions (E<sub>T</sub>), corrected for muons and tracks.
  - The track correction substitutes the expected energy deposition for each tracks with the Pt measured by the tracker
- Drell-Yan has 4-order of magnitude higher cross-section than Higgs(160) and the main discriminating power comes from requiring large missing energy
- Projected MET helps to reject Drell-Yan to tau-tau decays that tend to have MET aligned with one of the leptons:

$$\Delta \phi_{min} = min(\Delta \phi(\ell_1, E_T^{\text{miss}}), \Delta \phi(\ell_2, E_T^{\text{miss}}))$$
projected  $E_T^{\text{miss}} = \begin{cases} E_T^{\text{miss}} & \text{if } \Delta \phi_{min} > \frac{\pi}{2}, \\ E_T^{\text{miss}} \sin(\Delta \phi_{min}) & \text{if } \Delta \phi_{min} < \frac{\pi}{2} \end{cases}$ 



- Drell-Yan differs from other backgrounds since it mostly consists of same flavor events
- Drell-Yan background can be estimated by subtracting the opposite flavor (emu) events from the total yield.
- In order to decrease the uncertainty of the estimate we look at events in the Z peak window and estimate the remaining Drell-Yan background outside the Z peak window using a factor called Rout/in
- Rout/in is measure both in simulation and in data



min(pf∉<sub>T</sub>,ch∉<sub>T</sub>)





#### Limits by Channels (Cut based)





EPS2011 - CMS Higgs to WW Searches - Dmytro Kovalskyi

# CCMS

#### Limits by Channels (MVA based)





EPS2011 - CMS Higgs to WW Searches - Dmytro Kovalskyi



#### Limits by NJet Category





EPS2011 - CMS Higgs to WW Searches - Dmytro Kovalskyi