Cosmological perturbations : going beyond the linear theory

Benjamin Audren

Advisor: Julien Lesgourgues

Institute of Theoretical Physics École Polytechnique Fédérale de Lausanne

22/07/2011

Outline

- Introduction
 - Motivations
 - Data
- Non-linear computation
 - Starting equations
 - Standard perturbative approach
 - The Time Renormalization Group (TRG) approach
- Results and conclusion
 - Current output of the code
 - Work to come

Audren B (EPFL)

Introduction

What's the point?

Precision Cosmology: two types of observations

- Cosmic Microwave Background experiments \longrightarrow redshift ≥ 1000
- Large Scale Structure experiments \longrightarrow redshift ≤ 10

Introduction

What's the point?

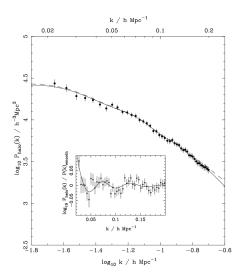
Precision Cosmology: two types of observations

- CMB \longrightarrow z $\ge 1000 \longrightarrow$ Linear regime
- LSS $\longrightarrow z \le 10$ \longrightarrow Gravitational collapse : non linearities

LSS can put constraints on (among others)

- (total) neutrino mass,
- Nature of Dark Energy, through perturbations and Baryonic Acoustic Oscillation (BAO) scales.

Data



The matter power spectrum P(k) reconstructed from the data release 7 of the Sloan Digital Sky Survey by Reid et al. [0907.1659].

Audren B (EPFL) 4 / 15

N-body, the ideal solution?

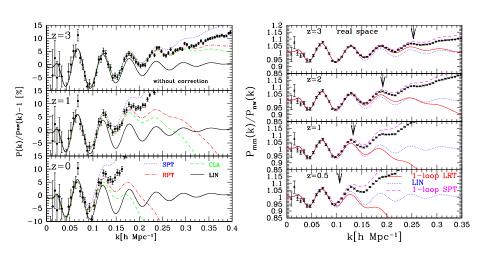


Figure: Predictions from Sato and Matsubara, at three years difference

Notations

Perturbative decomposition

Perturbed quantities and equations of motion

$$\rho(\mathbf{x},\tau) \equiv \bar{\rho}(\tau)[1+\delta(\mathbf{x},\tau)] \qquad \nabla^2 \Phi(\mathbf{x},\tau) = \frac{3}{2}\Omega_m(\tau)\mathcal{H}^2(\tau)\delta(\mathbf{x},\tau)$$

$$\phi(\mathbf{x},\tau) \equiv -\frac{1}{2}\frac{\partial \mathcal{H}}{\partial \tau}\mathbf{x}^2 + \Phi(\mathbf{x},\tau) \qquad \frac{d\mathbf{p}}{d\tau} = -am\nabla\Phi(\mathbf{x},\tau)$$

Collisionless Boltzmann equation

$$\frac{df}{d\tau} = \frac{\partial f}{\partial \tau} + \frac{\mathbf{p}}{ma} \cdot \nabla f - ma \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$

Equations in Fourier space

Fully non-linear equations

$$\begin{split} \frac{\partial \delta(\mathbf{k},\tau)}{\partial \tau} + \theta(\mathbf{k},\tau) &= -\int\!\!\int d^3\mathbf{k}_1 d^3\mathbf{k}_2 \delta_D(\mathbf{k} - \mathbf{k}_{12}) \alpha(\mathbf{k}_1,\mathbf{k}_2) \delta(\mathbf{k}_2,\tau) \theta(\mathbf{k}_1,\tau) \\ \frac{\partial \theta(\mathbf{k},\tau)}{\partial \tau} + \mathcal{H}(\tau) \theta(\mathbf{k},\tau) &+ \frac{3}{2} \Omega_m \mathcal{H}^2 \delta(\mathbf{k},\tau) = \\ &- \int\!\!\int d^3\mathbf{k}_1 d^3\mathbf{k}_2 \delta_D(\mathbf{k} - \mathbf{k}_{12}) \beta(\mathbf{k}_1,\mathbf{k}_2) \theta(\mathbf{k}_1,\tau) \theta(\mathbf{k}_2,\tau) \end{split}$$

with the mode-coupling functions:

$$egin{align} lpha(\mathbf{p},\mathbf{q}) &= rac{(\mathbf{p}+\mathbf{q})\cdot\mathbf{p}}{p^2} \ eta(\mathbf{p},\mathbf{q}) &= rac{(\mathbf{p}+\mathbf{q})^2(\mathbf{p}\cdot\mathbf{q})}{2p^2q^2} \ \end{aligned}$$

Standard Perturbation expansion (see Bernardeau et al. 0112551 for a complete review)

Decomposition, for an (unphysical) Einstein de Sitter universe

$$\delta(\mathbf{k},\tau) = \sum_{n=1}^{\infty} a^n(\tau) \delta_n(\mathbf{k}) \qquad ; \qquad \theta(\mathbf{k},\tau) = -\mathcal{H}(\tau) \sum_{n=1}^{\infty} a^n(\tau) \theta_n(\mathbf{k})$$

it gives rise to the following (and slightly cumbersome) expressions:

$$\begin{split} & \delta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 q_n \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n}) F_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n) \\ & \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 q_n \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n) \end{split}$$

 \implies hard to release the assumption on time-dependence of non-linear terms

Beyond the Standard approach

Renormalized Perturbation Theory (RPT by M. Crocce and R. Scoccimarro, 0509418)

Time Renormalization Group method (M. Pietroni, 0806.0971)

Beyond the Standard approach

Renormalized Perturbation Theory (RPT by M. Crocce and R. Scoccimarro, 0509418)

Time Renormalization Group method (M. Pietroni, 0806.0971)

quantities are evolved with time:
 no more assumptions on their behaviour!

TRG equations, in terms of spectra and bispectra

Variable change $\eta = log(a/a_{ini})$, but no assumption on time dependence

$$\begin{split} \partial_{\eta}P_{ab}(\mathbf{k},\eta) &= -\Omega_{ac}(\mathbf{k},\eta)P_{cb}(\mathbf{k},\eta) - \Omega_{bc}(\mathbf{k},\eta)P_{ac}(\mathbf{k},\eta) \\ &+ e^{\eta}\int d^{3}q \left[\gamma_{acd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k})B_{bcd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k},\eta) \right. \\ &+ B_{acd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k},\eta)\gamma_{bcd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k},\eta) \\ \partial_{\eta}B_{abc}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k},\eta) &= -\Omega_{ad}(\mathbf{k},\eta)B_{dbc}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k},\eta) \\ &- \Omega_{bd}(-\mathbf{q},\eta)B_{adc}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k},\eta) \\ &- \Omega_{cd}(\mathbf{q}-\mathbf{k},\eta)B_{abd}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k},\eta) \\ &+ 2e^{\eta}\left[\gamma_{ade}(\mathbf{k},-\mathbf{q},\mathbf{q}-\mathbf{k})P_{db}(\mathbf{q},\eta)P_{ec}(\mathbf{k}-\mathbf{q},\eta) \right. \\ &\gamma_{cde}(\mathbf{q}-\mathbf{k},\mathbf{k},-\mathbf{q})P_{da}(\mathbf{k},\eta)P_{eb}(\mathbf{q},\eta) \end{split}$$

Audren B (EPFL)

Small advertisement

Small advertisement

The new Boltzmann code is here...

- CLASS, for Cosmic Linear Anisotropy Solving System
- written in a clear, flexible and commented way in C
 by J. Lesgourgues (EPFL)
- New semi-analytical non-linear module released in June

Available at http://class-code.net

→ □ →

Results

Numerical predictions

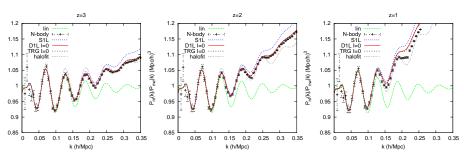


Figure: Comparison between the standard 1-loop (S1L), the dynamical 1-loop (D1L) and the renormalized computation (TRG) for different set of IC: here no initial bispectrum for D1L and TRG. Simulation results kindly provided by M. Sato and T. Matsubara

4 □ ▶

Results

Numerical predictions

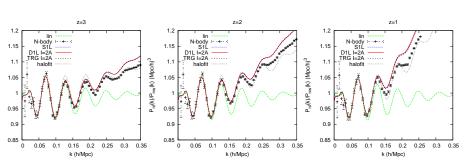


Figure: Here EdS initial bispectrum for D1L and TRG.

Results Discussion

Main points

- Percent precision up to $k \simeq 0.35 \ h/\text{Mpc}$ at z = 2, $k \simeq 0.18 \ h/\text{Mpc}$ at z=1, with the Dynamical 1-loop.
- Extremely small computing time (some minutes),
- because renormalization seems not to matter too much!
- Can be extended to various cosmologies (WIP), however the Dynamical 1-loop would not work as fast: computing time up to some hours.

Conclusion

So far

- Crucial role of IC in both N-body simulations and perturbation theory,
- It seems that the importance of proper ICs has a major effect on mildly non-linear scale compared to higher loop corrections (for scale independent background cosmology, and percent precision).

Conclusion

So far

- Crucial role of IC in both N-body simulations and perturbation theory,
- It seems that the importance of proper ICs has a major effect on mildly non-linear scale compared to higher loop corrections (for scale independent background cosmology, and percent precision),

To do

- ICs in N-body: not only internally but also cosmologically consistent, (computed within CLASS)
- Compare with LSS real data or weak lensing surveys,
- Include the code inside a MCMC code for parameter extraction (neutrino mass, warm dark matter contribution, more 'exotic' ideas...)