Measurements of Higher-Order Flow Harmonics at **PH ENIX**

Robert Pak

International Europhysics Conference on High Energy Physics Grenoble, Rhône-Alpes France July 21-27 2011

X (defines Ψ_R)

What's newer:

 Generalized eccentricities for higher flow moments

$$v_n = \left\langle e^{in(\phi_p - \Psi_n)} \right\rangle$$

- For smooth profile: Odd harmonics cancel out
- For "lumpy" profile: Odd harmonics persist

Aside: number of participants defines centrality of collision

Robert Pak (BNL)

Robert Pak (BNL)

Including fluctuations improves agreement with data, but adding viscosity is even better

Robert Pak (BNL)

Higher-order flow harmonics help to discriminate between models

Progress constraining viscosity to entropy density ratio $\frac{\eta}{2} \approx \lambda T c_s \equiv (\bar{R} K T c_s)$

between 1 and 2x the conjectured quantum limit.

Decomposition of two-particle $\Delta \phi$ Correlation Functions

Accounting for higher-order flow harmonics in bulk flow significantly changes interpretation of pair correlations shape, *e.g.*, Mach cone, ridge, etc...

Little change over this energy range; more beam energies to be added.

PHENIX measured direct photon excess at low transverse momentum in heavyion collisions (see talk from C. Pinkenburg).

But do these photons "flow"?

Statistical subtraction:

Direct photon v₂ observed

details in: arXiv:1105.4126 [nucl-ex]

Summary and Outlook

- Significant higher-order event anisotropy has been measured:
 - Fluctuations are important \rightarrow initial state is "lumpy"
 - v_3 helps disentangle initial state from η/s
- Almost perfect fluidity above 39 GeV
- Partonic flow validated by v₃ measurement
- Direct photon v₂ observed:
 - Small at high $p_T \rightarrow \text{consistent with pQCD}$
 - Large at low $p_T \rightarrow$ challenge to theory