

Search for supersymmetry in jets plus missing transverse momentum final states with the ATLAS detector

I.Vivarelli - Albert Ludwigs Universität, Freiburg On behalf of the ATLAS collaboration

International Europhysics Conference on High Energy Physics - Grenoble - July 21st-27th 2011

Introduction

- If accessible, squarks and gluinos will be produced copiously at the LHC
- In R-parity conserving scenarios, the simplest signature is multiple jets and missing E_T from $\tilde{g} \to qq\tilde{\chi}_1^0$ $\tilde{q} \to q\tilde{\chi}_1^0$
- Total Integrated Luminosity [fb^{-†} ATLAS Online Luminosity $\sqrt{s} = 7 \text{ TeV}$ • Previous results (with 35 pb⁻¹) published 1.6 LHC Delivered in Phys. Lett. B 701 (2011) p186. 1.4 ATLAS Recorded 1.2 Total Delivered: 1.32 fb⁻¹ Intermediate result (with 165 pb⁻¹) Total Recorded: 1.26 fb⁻¹ released in spring: ATLAS-0.8 CONF-2011-086 0.6 0.4 Analysis improved and 0.2 updated using 1 fb⁻¹ 27/02 27/03 24/04 22/05 19/06 17/07

Day in 2011

Object definition

JET PRESELECTION:

- Anti-k_T - $\Delta R = 0.4$ - P_T > 20 GeV, $|\eta| < 2.8$

Missing E_T (MET): - Reconstructed from the vectorial sum of all jets and leptons. Clusters not belonging to any jets are added to the MET

LEPTON VETO:

- <u>Electrons</u> Identified using shower shape and track matching criteria; $P_T > 20$ GeV, $|\eta| < 2.47$ - <u>Muons</u> identified with a track matching between the ID and muon spectrometer; $P_T > 20$ GeV, $|\eta| < 2.4$

• Events containing one lepton (e or μ) are analysed in a complementary analysis (see talk from H.Hayward, including results with searches with more complex final states)

Event selection

- Depending on the SUSY mass hierarchy, different production processes favoured (g̃g, g̃q, q̃q̃)
 - Signal regions optimised to maximise sensitivity to different production processes

Analysis strategy

- Main expected SM background: W/Z + jets, top production, QCD multi-jet
- For each background, for each signal region, one or more dedicated control regions (CR)
- Background determination done with a combined fit to all CRs (mutual background contamination in CR and correlations automatically taken into account)
- Transfer factors (TF) from each background process CR to the SR are computed using a mix of data-driven and Monte Carlo driven techniques.

$$N(SR, est, proc) = N(CR, obs, proc)$$

$$\left[\frac{N(SR, raw, proc)}{N(CR, raw, proc)}\right]$$

QCD background estimation

- QCD pseudo-events obtained by smearing low E_T significance events with a jet response function.
- Validation:
 - QCD prediction from pseudoevents compared to data in events where $\Delta \phi_{min (jet, ET^{miss})} < 0.4$
 - QCD multi-jet events have large MET because of jet mismeasurement or heavy flavours leptonic decays.
 - In both cases MET tends to align with one of the jets

Z control region

- $Z \rightarrow vv$ is the dominant component of the total Z background
- Estimation done in 2 CR (in both cases replacing the boson with MET):
 - γ+jets events (use robustness of ratio between photon and Z production cross section)
 - Z (→ee,μμ) + jets

W and top control regions

- Two control regions defined in events containing one additional lepton (additional selection 30 GeV $< M_T < 100$ GeV):
 - Applying a b-tag veto a W control region is obtained.
 - Applying a b-tag requirement a top control region is obtained.

I.Vivarelli - EPS-HEP, Grenoble July 21st-27th 2011

Systematic uncertainties

- Systematic uncertainties are reduced by the use of the transfer factors
- Jet energy scale and resolution uncertainties derived using 2010 data
 - Additional, conservative, uncertainties due to pileup considered
 - (typical effect on TF ~15%)
- Monte Carlo modelling uncertainties addressed by comparing transfer factor obtained with, e.g., ALPGEN or MC@NLO and varying renormalisation and factorisation scales (~25%)
- Depending on the CR: CR available statistics, lepton identification, b-tagging, etc. considered, typically with a smaller impact.

Results

Process	Signal Region				
	≥ 2-jet	≥ 3-jet	\geq 4-jet, $m_{\rm eff} > 500 {\rm GeV}$	\geq 4-jet, $m_{\rm eff} > 1000 {\rm GeV}$	High mass
Z/γ +jets	32.5 ± 2.6 ± 6.8	25.8 ± 2.6 ± 4.9	$208 \pm 9 \pm 37$	$16.2 \pm 2.1 \pm 3.6$	3.3 ± 1.0 ± 1.3
W+jets	$26.2 \pm 3.9 \pm 6.7$	$22.7 \pm 3.5 \pm 5.8$	$367 \pm 30 \pm 126$	$12.7 \pm 2.1 \pm 4.7$	$2.2 \pm 0.9 \pm 1.2$
$t\bar{t}$ + single top	$3.4 \pm 1.5 \pm 1.6$	$5.6 \pm 2.0 \pm 2.2$	375 ± 37 ± 74	$3.7 \pm 1.2 \pm 2.0$	5.6 ± 1.7 ± 2.1
QCD jets	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.74 \pm 0.14 \pm 0.51$	$2.10 \pm 0.37 \pm 0.83$
Total	$62.3 \pm 4.3 \pm 9.2$	$55 \pm 3.8 \pm 7.3$	$984 \pm 39 \pm 145$	$33.4 \pm 2.9 \pm 6.3$	$13.2 \pm 1.9 \pm 2.6$
Data	58	59	1118	40	18
excluded o x acc (fb)	24	30	477	32	17

- No discrepancy with respect to SM predictions.
- The result is interpreted as a 95% CL exclusion limit on effective cross sections using a profile likelihood ratio approach following the CLs prescriptions.
- Analysis giving best expected limit used in each point.

Result interpretation (1)

- Simplified model (pheno MSSM) interpretation:
 - LSP mass set to 0, all other sparticle masses set to 5 TeV except a common (1st and 2nd generation) squark mass and the gluino mass (shown in the plot)
 - Up to m ~ 1 TeV excluded for equal gluino-squark masses (2010 limit extended by ~250 GeV).
- Exclusion limit not too sensitive to the neutralino mass up to ~200 GeV

Result interpretation (2)

- Results interpreted in mSUGRA/CMSSM (A₀ = 0, tan β = 10, μ >0)
- Limit in large m₀ region profits from the introduction of signal regions with large jet multiplicities.
- Equal squark-gluino masses excluded below 980 GeV

Conclusions

- The ATLAS search for R-parity conserving SUSY in final states with jets and transverse missing momentum has been updated to L = 1 fb⁻¹ and the analysis strategy improved.
- Full agreement with SM prediction observed in five signal regions defined based on jet multiplicity and m_{eff} cut.
- The results have been used to derive a 95% CL exclusion limit:
 - In simplified models with only squark (1st and 2nd generation) and gluino accessible, $m \sim 1$ TeV excluded if $m_g = m_q$.
 - In mSUGRA/CMSSM, equal gluino and squark masses are excluded up to 980 GeV.
 - A paper is in preparation.

Jet energy scale uncertainties

- Derived using 2010 data
- Main component of the uncertainty at high p_T: calorimeter uncertainty
- Additional uncertainties taken into account:
 - 2011 pileup
 - response dependency on the flavour
 - response dependency on jet isolation

17

2 jets signal region control plots

4 jets signal region control plots

High mass signal region control plots

2 jets signal region exclusion limits

21

3 jets signal region exclusion limits

4 jets signal region ($m_{eff} > 500 \text{ GeV}$)

23

4 jets signal region ($m_{eff} > 1 \text{ TeV}$)

High mass signal region

Delta phi distribution

I.Vivarelli - EPS-HEP, Grenoble July 21st-27th 2011

