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Motivations

Einstein’s equations:

Rµν(g)− 1

2
gµνR(g) =

8πG

c4
Tµν

− Λgµν

The source of spacetime curvature is the energy-momentum tensor of matter

What is the response of spacetime in situations where the quantum nature of matter is
dominant?

A(g)∂2g +B(g)(∂g)2 + C(g) = 8πG
c4
T

e-m analogy
• gauge part: diffeos Aµ 7→ Aµ + ∂µλ

• constrained part: Newton’s law ∇ · E = ρ

• degrees of freedom: Two Two spin-1 polarizations

Structure of equations
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Perturbative expansion

Perturbative approach:

gµν = ηµν + hµν

=⇒ Two spin-2 polarizations, gravitational waves

Key to quantization:
the splitting introduces a a background spacetime, and a quadratic term in the action.
=⇒ tools of quantum field theory become available

However!

• Goroff and Sagnotti (’86), Van de Ven (’91): As long since suspected, general
relativity is not a perturbatively renormalizable quantum field theory
=⇒ only valid as an effective field theory

• Could the problem be in the perturbative treatment, rather than in the theory itself?

• Maybe the problem lies in this splitting: can one quantize the full gravitational field
at once?

Case for background-independence
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A paradigm shift

kinematics dynamics

QFT: |pi, hi〉

quanta: momenta, helicities, etc. Feynman diagrams

everything takes place in spacetime ⇒ quanta make up space and evolve into spacetime

At the Planck scale:
kinematics dynamics

LQG: |Γ, je, iv〉

quanta: areas and volumes spin foams

how do we recover semiclassical physics on a smooth spacetime?
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Stating the problem

• LQG is a continuum theory with well-defined and interesting kinematics
(spin networks, discrete spectra of geometric operators, etc.)

• Models for the dynamics exist

• Main open problem: how to test the theory and extract low-energy physics from it

Why is it so hard? The quanta are exotic

• photons −→ electromagnetic waves

• LQG quantum geometries −→ smooth classical geometries

I discrete
I non-commutative
I distributional (defined on graphs)

=⇒

showing the link between LQG on a fixed graph and a notion of discrete geometry

Aim of the talk:

Work in collaboration with L. Freidel, C. Rovelli, E. Bianchi and P. Doná
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Fundamental coupling constants

Working hypothesis: the connection as a fundamental (and independent) variable1

gµν 7→ (gµν ,Γ
ρ
µν)

Lowest dimension operators and their coupling constants:

√
−g,

√
−ggµνRµν(Γ),

εµνρσRµνρσ(Γ),

Λ
G

1
G

1
γG

coupling constants: G, Λ and γ : Immirzi parameter

• Classically irrelevant in the absence of torsion:

Γρµν =
{ρ
µν

}
=⇒ εµνρσRµνρσ(Γ(e)) = 0

• Non-perturbative quantum role?

Area gap in LQG: Amin =
√

3
2
γ`2P

1more precisely: (eIµ, ωIJµ ).
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Canonical formulation: Ashtekar variables

Hamiltonian analysis very complicated (second class constraints)

Key simplification: Ashtekar-Barbero variables: ⇒ First class constraints

• Densitised triad: Eai

• SU(2) connection: Aia

(a = 1, 2, 3 spatial indices, i = 1, 2, 3 SU(2) indices)

Related to ADM variables via a canonical transformation
(gab,K

ab) =⇒ (Aia, E
a
i )

{Aia(x), Ebj (y)} = γ G δijδ
b
aδ

(3)(x, y)

Remarks: • Same phase space of an SU(2) gauge theory
• the Immirzi parameter enters the Poisson structure
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Spin networks and quantum geometry

QFT LQG

F = ⊕
n
Hn H = ⊕

Γ
HΓ

|n, pi, hi〉 → quanta of fields |Γ, je, iv〉 → quanta of space

geometric operators turn out to have discrete spectra
with minimal excitations proportional to the Planck length

Key result

• spins je on each edge:

quanta of areas A(Σ) = γ~G
∑
e∈Σ

√
je(je + 1)

• intertwiners iv on each vertex:

quanta of volumes V (R) = (γ~G)3/2∑
n∈R f(je, in)

This information is not enough to recover a classical geometry (not even a discrete one)
just as the |q〉 eigenstates in QM do not describe classical states

Three aspects of quantum geometry:

• discrete eigenvalues • non-commutativity • graph structure
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A paradigm shift

kinematics dynamics

QFT: |n, pi, hi〉

quanta: momenta, helicities, etc. Feynman diagrams

observables perturbative expansion
n: # of quantum particles degree of the graph

⇓
order of approximation desired

LQG: |Γ, je, iv〉

quanta: areas and volumes spin foams

link to classical geometries? what approximation?
meaning of Γ?
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Geometry on a single graph?

{Aia(x), Ebj (y)} −→ H = ⊕
Γ
HΓ, |Γ, je, iv〉

• Consider a single graph Γ, and the associated Hilbert space HΓ.

• This truncation captures only a finite number of degrees of freedom of the theory,
thus states in HΓ do not represent smooth geometries.

• Standard intepretation: A and E distributional along the graph
⇒ difficulties with the semiclassical limit

• Can they represent a discrete geometry, approximation of a smooth one?
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Can we interpret HΓ as the quantization of a space of discrete geometries?

V (je), Hv ≡ Inv

[
⊗
e∈v

V (je)

]
, HΓ = ⊕

je

[
⊗
v
Hv
]

irrep of SU(2)
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The building block of loop gravity: intertwiner space

Hv ≡ Inv
[
⊗e∈vV (je)

]
Operators: ~Ji, ~Ji · ~Jj , i = 1 . . . F

Only F − 3 commuting operators: {J2
1 . . . J

2
F , (J1 + J2)2 . . .}

Recoupling basis: |j1 . . . jF , i12, . . .〉

j1

j2

j4

j3

�
@ �

@

i12r r

1/2

1/2

1/2

1/2

�
@ �

@

0, 1r r

Is there a geometric interpretation of this space?
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Intertwiners and polyhedra 1

Is there a geometric interpretation of this space?

Polyhedra!

The connection is made in two steps:

polyhedra

⇐=

SF

=⇒

H = Inv
[
⊗iV ji

]

1. H is the quantization of a certain classical phase space SF
[Kapovich and Millson ’96, ’01, Charles ’08, Conrady and Freidel ’08]

2. Points in this phase space represent bounded convex flat polyhedra in R3

[E.Bianchi,P.Doná,SS 1009.3402]
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Polyhedra

• Minkowski’s theorem: (ji, ni) −→ unique polyhedron

• Reconstruction algorithms explicitly known, V (j, n), `(j, n), adjacency matrix, etc.

For F > 4 there are many different combinatorial structures, or classes

F = 5 Dominant: Codimension 1:F = 6 Dominant:

Codimension 1:

Codimension 2:

Codimension 3:

• The classes are all connected by 2-2 Pachner moves
�@

�@

↔ @
� @

�

(they are all tessellations of the 2-sphere)

It is the configuration of normals to determine the class

• The phase space SF can be mapped in regions corresponding to different classes.

− Dominant classes have all 3-valent vertices.
[maximal n. of vertices, V = 3(F − 2), and edges, E = 2(F − 2)]

− Subdominant classes are special configurations
with lesser edges and vertices, and span
measure zero subspaces.
[lowest-dimensional class for maximal number of triangular faces]
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Coherent intertwiners

polyhedra ⇐= SF =⇒ H = Inv
[
⊗iV ji

]
Geometric quantization to derive holomorphic coherent states for H = Inv

[
⊗iV ji

]
[E. Livine and SS PRD (’07)]

Geometric operators Ô( ~Ji) peaked on classical values O(Aini) with minimal uncertainties

⇒ states of semiclassical polyhedra
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Polyhedra on the full graph

The Hilbert space:

HΓ = ⊕
je

[
⊗
v
Hv
]

is a quantization of the classical phase space

SΓ = ×eT ∗S1 ×v SF (v)

⇑

of twisted geometries
[L.Freidel and SS, 1001.2748]

SF = {ni |
∑
i jini = 0}

T ∗S1 = (j, ξ)

(je, ξe)

Just as the intertwiners are the building block of the Hilbert space,
polyhedra are the building blocks of the classical phase space

Speziale — Introduction to Loop quantum gravity SU(2) singlets and polyhedra 18/28



Polyhedra on the full graph

The Hilbert space:

HΓ = ⊕
je

[
⊗
v
Hv
]

is a quantization of the classical phase space

SΓ = ×eT ∗S1 ×v SF (v)

⇑

of twisted geometries
[L.Freidel and SS, 1001.2748]

SF = {ni |
∑
i jini = 0}

T ∗S1 = (j, ξ)

(je, ξe)

Just as the intertwiners are the building block of the Hilbert space,
polyhedra are the building blocks of the classical phase space

Speziale — Introduction to Loop quantum gravity SU(2) singlets and polyhedra 18/28



Polyhedra on the full graph

The Hilbert space:

HΓ = ⊕
je

[
⊗
v
Hv
]

is a quantization of the classical phase space

SΓ = ×eT ∗S1 ×v SF (v)

⇑

of twisted geometries
[L.Freidel and SS, 1001.2748]

SF = {ni |
∑
i jini = 0}

T ∗S1 = (j, ξ)

(je, ξe)

Just as the intertwiners are the building block of the Hilbert space,
polyhedra are the building blocks of the classical phase space

Speziale — Introduction to Loop quantum gravity SU(2) singlets and polyhedra 18/28



Polyhedra on the full graph

The Hilbert space:

HΓ = ⊕
je

[
⊗
v
Hv
]

is a quantization of the classical phase space

SΓ = ×eT ∗S1 ×v SF (v)

⇑

of twisted geometries
[L.Freidel and SS, 1001.2748]

SF = {ni |
∑
i jini = 0}

T ∗S1 = (j, ξ)

(je, ξe)

Just as the intertwiners are the building block of the Hilbert space,
polyhedra are the building blocks of the classical phase space

Speziale — Introduction to Loop quantum gravity SU(2) singlets and polyhedra 18/28



Polyhedra on the full graph

The Hilbert space:

HΓ = ⊕
je

[
⊗
v
Hv
]

is a quantization of the classical phase space

SΓ = ×eT ∗S1 ×v SF (v)

⇑

of twisted geometries
[L.Freidel and SS, 1001.2748]

SF = {ni |
∑
i jini = 0}

T ∗S1 = (j, ξ)

(je, ξe)

Just as the intertwiners are the building block of the Hilbert space,
polyhedra are the building blocks of the classical phase space

Speziale — Introduction to Loop quantum gravity SU(2) singlets and polyhedra 18/28



Polyhedra on the full graph

The Hilbert space:

HΓ = ⊕
je

[
⊗
v
Hv
]

is a quantization of the classical phase space

SΓ = ×eT ∗S1 ×v SF (v)

⇑

of twisted geometries
[L.Freidel and SS, 1001.2748]

SF = {ni |
∑
i jini = 0}

T ∗S1 = (j, ξ)

(je, ξe)

Just as the intertwiners are the building block of the Hilbert space,
polyhedra are the building blocks of the classical phase space

Speziale — Introduction to Loop quantum gravity SU(2) singlets and polyhedra 18/28



Twisted geometries: interpretation

For each point (Ae, Ee) on the phase space at fixed graph,
there are infinite continuous metrics that can correspond to it

Twisted geometries are a particular choice of interpolating geometry associated with a
cellular decomposition of the manifold dual to Γ:

each classical holonomy-flux configuration on a fixed graph can be visualized as a
collection of adjacent polyhedra (A,n) with extrinsic curvature (→ ξ) between them

A,E
=⇒

N, j, ξ, Ñ

BUT: If we look at two neighbouring polyhedra, they induce two different geometries on
the shared face: By construction, the area is the same, but the shape will differ in general.

The geometries are twisted in the sense that
they are well-defined locally (on each polyhedron),
but are discontinuous at the intersections (the faces) æ
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Overview

Twistor space

↓ matching area reduction

Twisted geometries ⇐⇒ Loop gravity

↓ matching shapes reduction

Regge calculus
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Overview

↙ ↘
Spin networks Twistors

↘ ↙
Twisted geometries

↓
Regge geometries
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Some applications

• Short scale dinamical regularization
[SS, Livine, ...]

2-point function in a toy model:
expected large scale behaviour recovered,
hints of new Planck scale physics

r/`Planck

W

1 1 0 1 0 00 . 0 0 1

0 . 0 1

0 . 1 srabrorreσ15=α

Log-log plot

1/r2

• Black holes
[Ashtekar, Baez, Perez, Rovelli, ...]

Interpretation of the BH entropy S = A
4G

in terms of microstates corresponding to
a unique macroscopic geometry
but different quantum shapes

• Cosmology
[Ashtekar, Bojowald, Rovelli, Barrau, ...]

New repulsive force avoiding the singularity
and creating a quantum bounce
Modification of the Friedmann equations
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Conclusions

• LQG is a continuum theory with well-defined and interesting kinematics
(spin networks, discrete spectra of geometric operators, etc.)

• Models for the dynamics exist, defined graph by graph similar to scattering
amplitudes in QFT

• Each graph represents quantum geometries, which we can visualize as a collection of
fuzzy polyhedra

• The semiclassical limit should be recovered in the limit in which the polyhedra are
much larger than the Planck scale (no fuzzy) and much smaller than the resolution
scale (smooth geometry)

I single graph level: connection with Regge calculus established
I continuum limit: main open question!
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