Standard Model physics with taus in ATLAS

Anna Kaczmarska IFJ PAN, Cracow, Poland

Why we are interested in taus?

Tau leptons play an important role in the physics program of the ATLAS experiment as they are "tools" in many areas

- Tau leptons provide useful signatures in searches for new phenomena like
 - Higgs bosons
 - Supersymmetry
 - Exotics scenarios
- Standard Model processes with taus in final states will be also the key
 - to understand the detector (for example $Z \rightarrow \tau \tau$ as golden channel)
 - measurement of Z/W production with taus in final states
 - interesting itself as first time at so high energy
 - background to New Physics searches

<u>Today</u>

- Few words about hadronic tau reconstruction and identification in ATLAS
- First observation of Z->tautau events (approval of cross-section paper tomorrow)

26.05.2011

- First observation W->tau nu (cross-section analysis under approval)
- Some ideas for taus in top anti top events

Anna Kaczmarska

Current status of detector operation

- LHC and ATLAS are back in business after the technical stop
 - since last Thursday we collect again physics data
- New record!
 - peak luminosity: 1.1 x 10³³ achieved at ~2AM on Monday 23 May
- •Total integrated luminosity in 2011: ~ 387 pb⁻¹
- 15-30 pb⁻¹ per day over the last few days
- In the next weeks/months can reach 5×10^{33}
 - average ~20 events pile-up !?

- The LHC has performed over 2010 in a superb way at 7 TeV collision energy, and delivered a good sample of data in stable pp beam operation (~ 48 pb⁻¹ integrated luminosity)
- Unfortunately all results I can show you today are based on 2010 data and some on small fraction of 2010 luminosity
 - a lot of interesting results under approval just now!

26.05.2011

Reconstruction of hadronic tau decays

Tau Identification Method

Identification method for tau candidates used in presented studies is based on simple cuts

The cut-based ID uses 3 variables: electromagnetic and track radius and leading track momentum fraction

Z->TT final states

• Two decay modes considered for Z->TT decays: "semileptonic" and fully leptonic

• In "semileptonic" mode we are selecting events with one τ decaying leptonically and other hadronically ($\sigma \times BR \sim 0.45$ nb),

• such mode is an important source of hadronically decaying T leptons

- \bullet one can trigger on the lepton (e/µ) providing an unbiased sample of hadronic τ decays
- to get a control sample of tau and to measure the tau identification, tau trigger efficiency and tau energy scale
- invariant mass sensitive to the scale of the missing transverse energy
- both tau(muon)tau(had) and tau(ele)tau(had) are considered
- In fully leptonic channel lower signal yield, but two clean leptons in final state ($\sigma \times BR \sim 0.062$ nb)
 - for the observation studies only tau(ele)tau(mu) channel considered

 for cross-section measurement also tau(mu)tau(mu) -> real challenge because of Drell-Yan background!

• First step towards new measurements was to confidently observe Z→TT events in data

$Z {\rightarrow} \tau_{lep} \tau_{had} \text{ process and background sources}$

• Signal: one of t's decays hadronically and other to electron or muon. $\angle \rightarrow T_{lep}T_{had}$

• In final state: lepton and T candidate of opposite charge and missing energy

• Backgrounds: ID of hadronic T decays difficult and suffers from higher fake rates, than from ID of electrons or muons -> most of backgrounds: true lepton with jet misidentified as a hadronically decaying T

- QCD multijets dominant background due to their very large cross-section
 - \bullet lepton may be real (heavy-flavour decays) or fake, while τ is typically a misidentified QCD jet
- W+jets has cross section about an order of magnitude higher than signal
 lepton and the jet in this process are biased towards having an opposite sign, similarly to the signal.
- •Z->ee, µµ
 - one of the leptons fakes a τ candidate, or Z produced with a jet misidentified as a τ candidate and at the same time one of the leptons not reconstructed.
- Top anti-top production, in the semi-leptonic and di-leptonic decay modes
 may contain a true τ lepton, or else jets or leptons that can fake a τ, as well as at least one real electron or muon. However cross section is small.

• Contributions from single-top, diboson production and low-mass $\gamma*/Z \rightarrow \ell\ell$ processes negligible.

Event & Object Selection

- Analysis based on collision data at Js=7 TeV from March to September 2010 (full 2010 data ~35 pb⁻¹)
 - Muon channel: 8.5 pb⁻¹, Electron channel: 8.3 pb⁻¹
- Events required to pass basic beam and data quality requirements
 - Events selected using single-lepton triggers, with threshold on the trigger object of $p_T(muon) = 10$ GeV in the muon channel and $E_T(ele) = 15$ GeV in the electron channel.
 - At least one primary vertex with at least 4 reconstructed tracks
 - Tau-jet & MET cleaning cuts to reject candidates caused by out-of-time cosmic events or known noise effects in the calorimeters
 - Object Selection -> four distinct steps
 - Object pre-selection
 - Overlap Removal
 - Remove pre-selected tau candidates within ΔR <0.4 of e or μ
 - Remove pre-selected e within ΔR <0.2 of μ
 - Full object selection
 - Lepton isolation cuts

Object Preselection and Selection

Electrons:

- Preselection:
 - ET>10 GeV, |eta|<2.47 (excluding 1.37< |eta| < 1.52), not in bad region of EM calorimeter, medium ID
- Selection:
 - ET>15 GeV, tight ID

Muons:

• Preselection:

- pT>10 GeV, |eta|<2.4, CombinedMuon, |z0|< 10 mm
- Selection:
 - pT> 15 GeV, additional quality cuts on ID track, and difference between pT of track from muon system and tracker

Taus:

- Preselection:
 - pT>15GeV, |eta|<2.5, loose ID
- Selection:
 - tight ID, vetos against candidates reconstructed from electrons and muons

Missing transverse energy:

• No cut on it in this analysis, but enters calculation of other quantities used for the suppression of W+jets backgrounds.

Lepton Isolation

Important tool for rejecting QCD background
 Isolation cuts optimized using Monte Carlo

 $Iso_{PT}^{0.4}$

Sum of transverse momentum of associated tracks to charged particles in a cone of $\Delta R = 0.4$

Iso^{ΔR}_{ET} Sum of transverse energy of particles in calorimeter in a cone of $\Delta R = 0.4$ around muon or $\Delta R = 0.3$ around electron Isolation variable muon p_T Cone40/ $p_T < 0.06$ muon E_T Cone40/ $p_T < 0.06$ electron p_T Cone40/ $p_T < 0.06$ electron E_T Cone30/ $p_T < 0.1$

Z→T_{lep}T_{had}

Anna Kaczmarska

26.05.2011

Event Selection

Once the multijet background has been suppressed by T-ID and lepton isolation cuts, events having W->lv, W->Tv ->lvvv, and Z->ll decays become the dominant background.

These backgrounds are suppressed with several event-level cuts

- Dilepton veto
 - Any event with >1 preselected e/ μ is rejected, suppressing Z \rightarrow II
- W+jets suppression cuts
 - These backgrounds are suppressed by cutting on two variables that exploit kinematic correlations between the lepton and transverse missing energy -> next slide
- Visible mass cut: 35<mvis<75 GeV</p>
 - mvis: invariant mass of I-T_{had} system
- Tau-jet cuts: number of tracks 1 or 3; |charge|=1
- Opposite sign (lepton-T_{had}) cut

W+jet suppression

As mass of Z is much larger than mass of τ , the τ 's in Z $\rightarrow \tau\tau$ will be boosted such that their decay products will be collimated along trajectory of the parent τ lepton

Z→T_{lep}T_{had}

26.05.2011

- E_T^{miss} will be vector sum of p_T of neutrinos. The majority of Z will have low p_T, and τ's will be back-to-back, but in case Z has significant nonzero boost, the E_T^{miss} vector will fall in the angle between decay products of Z
- In contrast, in events from the W \rightarrow lv+jets the neutrino, jet, and lepton should all point in different directions, balancing p_T in the transverse plane.
 - E_T^{miss} vector should point along the neutrino which is not in the angle between the fake τ candidate and the lepton.
- In $W \to \tau v \to |vvv|$ events, there are two additional neutrinos, but the E_{τ}^{miss} will still tend to point outside of the angle between fake τ candidate and the lepton.

Anna Kaczmarska

Anna Kaczmarska

Background Estimation

In order to estimate the final purity and significance of the selected Z->TT events, the number of background events passing the selection must be estimated.

- The estimated number of background events from Z -> II and ttbar is taken from the Monte Carlo expectations
- Monte Carlo simulation is used for W ->lv and W->TV but the samples were renormalized with a scale factor in order to agree with the data
 - Next slide

The multijets background, was estimated using a data-driven method as rates of real and fake leptons in QCD dijets are not expected to be modeled well in Monte Carlo

• Two data-driven estimates (one primary and one for cross-check)

W+jets Scale Factor

W+jet MC agrees well prior to requiring tau ID, but MC overestimates when requiring tau ID. Tau ID rejection known to be underestimated in MC (ATL-CONF-2010-086)
Need to calculate a scale factor from data in W rich control region (WCR) defined by

- Events passing dilepton veto
- Invert both W-suppression cuts
- Other cuts not applied

Calculate scale factor such that MC events equal observed events

 $k_{W} = \begin{cases} 0.94 \pm 0.02 \text{ (stat.)} & \text{muon channel, loose } + \text{ not tight tau}, \\ 0.57 \pm 0.05 \text{ (stat.)} & \text{muon channel, tight tau}, \\ 0.96 \pm 0.03 \text{ (stat.)} & \text{electron channel, loose } + \text{ not tight tau}, \\ 0.69 \pm 0.06 \text{ (stat.)} & \text{electron channel, tight tau}. \end{cases}$

- Scale number of observed events in CR by isolation ratio to get estimate for signal region (A)
- Isolation ratio: calculated in an independent pair of QCD rich CRs (C, D), obtained by loosening tau selection ("loose" but not "tight")

Subtract all non-QCD contributions

 $N_{\text{QCD}}^{A} = \begin{cases} 5.2 \pm 0.7 \text{ (stat.)} \pm 0.7 \text{ (syst.)} & \text{muon channel} \\ 6.8 \pm 0.6 \text{ (stat.)} \pm 0.7 \text{ (syst.)} & \text{electron channel.} \end{cases}$

QCD Estimation - main method

Anna Kaczmarska

26.05.2011

QCD Estimation - second method

Use same-sign (SS) region to obtain number of events in OS (signal) region Ratio OS/SS theoretically expected to be 1 measured in separate control regions of inverted isolation Non-QCD contributions subtracted in control regions Method limited by very poor statistics in SS region Result in statistical agreement with main method $R_{OSSS} = \begin{cases} 1.10 \pm 0.22 \text{ (stat.)} \pm 0.07 \text{ (syst.)} & \text{muon channel} \\ 1.15 \pm 0.16 \text{ (stat.)} \pm 0.17 \text{ (syst.)} & \text{electron channel} \end{cases}$ Non-С D isolated $N_{\text{QCD}}^{A} = \begin{cases} 2.14 \pm 2.35(\text{stat.}) \pm 0.42(\text{syst.}) \\ \text{Muon Channel} \\ 2.73 \pm 2.36(\text{stat.}) \pm 0.71(\text{syst.}) \\ \text{Electron Channel} \end{cases}$ B А Isolated Opposite Same Sign Sign

Anna Kaczmarska

26.05.2011

Systematic Uncertainties

- MC-based Z, tt background estimates: systematics on MC/data agreement
 - lepton trigger efficiency, lepton ID efficiency, lepton isolation, lepton fake rates of taus, jet fake rates of taus
 - Energy scale (6-20%), pile-up, MC UE tune and calo shower modeling (9%), xsection and lumi
 - Dominant: jet fake rates of taus (50%)
- W background estimate: uncertainty on kW scale factor and energy scale
- QCD estimate (14-19%):
 - Effect of MC/data disagreement due to MC-subtraction in CRs
 - Uncertainty of method itself (assumptions, stability of ratios)
 - Note: Statistical uncertainty from CRs comparable to systematic uncertainties

Muon Channel (8.5 pb ⁻¹)	Electron Channel (8.3 pb ⁻¹)
51	29
9.9 ± 2.1	11.8 ± 1.7
5.2 ± 0.7 (stat.) ± 0.7 (syst.)	6.8 ± 0.6 (stat.) ± 0.7 (syst.)
$4.7 \pm 0.5(stat.) \pm 1.5(syst.)$	5.0 ± 0.6 (stat.) ± 1.4 (syst.)
41.1 ± 7.1 (stat.) ± 2.1 (bkg. est.)	17.2 ± 5.4 (stat.) ± 1.7 (bkg. est.)
$39.9 \pm 1.8(\text{stat.}) \pm 6.7(\text{syst.})$	24.5 ± 1.4 (stat.) ± 7.9 (syst.)
	Muon Channel (8.5 pb ⁻¹) 51 9.9 ± 2.1 $5.2 \pm 0.7(stat.) \pm 0.7(syst.)$ $4.7 \pm 0.5(stat.) \pm 1.5(syst.)$ $41.1 \pm 7.1(stat.) \pm 2.1(bkg. est.)$ $39.9 \pm 1.8(stat.) \pm 6.7(syst.)$

Observed signal consistent with SM expectation

26.05.2011

Anna Kaczmarska

Z->T(electron) T(muon)

Muon Preselection: $p_{\tau} > 10 \text{ GeV}, |\eta| < 2.4$ STACO isCombined |d0| < 10 mmCharge =+/- 1 Muon Cleaning cuts (MCPAnalysisGuidelinesRel15)

Jet Preselection:

AntiKt4 Jets TopoEM + JES p_⊤ > 20 GeV, |ŋ| < 4.5

Electon Preselection: $p_{\tau} > 15 \text{ GeV}$ $|\eta| < 2.47, !(1.35 < |\eta| < 1.52),$ ISEM Robust Medium, Author == 1 OR 3 OTX Map (from run 167521 in MC) Charge = +/- 1

MET: LocHadTopo + MuonBoy – RefMuon Track

Full available integrated luminosity from year 2010 used: 35 pb⁻¹

Cuts to remove QCD multijet background:

- Electrons: PtCone40/ p_{T} < 0.06, EtCone30/ p_{T} < 0.1
- Muons: PtCone40/ p_{τ} < 0.06, EtCone40/ p_{τ} < 0.06
- $\Sigma \cos\Delta\Phi = \cos(\Phi_{lep1} \Phi_{MET}) + \cos(\Phi_{lep2} \Phi_{MET}) > -0.15$
 - Σ[Et(leptons) + Et(Jets)] + MET < 150 GeV
 - 25 < m(Lep Lep) < 80 GeV

Anna Kaczmarska

26.05.2011

Observation: Z->T(electron) T(muon)

Samples	Number of candidates
Data	75
$Z \rightarrow \tau \tau$	69 ± 5 (stat.) ± 15 (sys.)
$Z \rightarrow \ell \ell, W, t\bar{t}$ background	3.0 ± 0.7 (stat.) ± 0.7 (sys.)
QCD Multijet background (data)	$3.4 \pm 3.7 \text{ (stat.)} \pm 0.6 \text{ (sys.)}$
Total background	6.4 ± 3.9
Data (after background subtraction)	68.6 ± 8.7 (stat.) ± 3.9 (bkg. est.)

Observed signal consistent with SM expectation

Anna Kaczmarska

Run 155697, Event 6769403 Time 2010-05-24, 17:38 CEST

 $W \rightarrow \tau \nu$ candidate in 7 TeV collisions

$W \rightarrow \tau_{had} v$ final state

• $W \rightarrow \tau v$ is predicted to be produced with $\sigma \times BR = 10.46$ nb which is about 10x higher than for Z-> $\tau \tau$ events.

- Since purely leptonic T decays cannot be easily distinguished from electrons and muons fromW ->ev or W->µv decays, the analysis presented uses only hadronically decaying T
- This channel allowed first observation of hadronic decays of tau leptons
- •important background in new physics searches
- $\boldsymbol{\cdot}$ also important for $\boldsymbol{\tau}_{had}$ performance studies

W→T_{had}V

• Signal: dominated by low- p_T W's producing t's with visible p_T 10-40 GeV. E_T miss, associated with the neutrinos from W and τ_{had} decays, has a maximum around 20 GeV and a significant tail up to about 80 GeV.

Backgrounds:

- QCD multijets dominant background due to their very large cross-section
- $W e/\mu(\tau_{e/\mu})v$ contributes if lepton from the W-boson decay is identified as a 1-prong hadronically decaying τ lepton or if a fake τ_h candidate from initial-state QCD radiation.
- Z->ee/ $\mu\mu$ contributes if one of leptons makes fake Th and the other one is lost.
- $Z \rightarrow \tau_{\tau}\tau_{\tau}$ contributes to the background if one of the τ leptons is identified as a hadronically decaying τ lepton while the second one is lost

• Top anti-top much smaller cross section. It contributes if one of W's produces a T lepton in its decay and the other one decays into a pair of quarks, electron or muon which are no reconstructed. Fully hadronic decays can contribute to the fake Th identification.

Event & Object Selection

- Analysis based on **546 nb**-1
- Events required to pass basic beam and data quality requirements
- At least one primary vertex with at least 3 reconstructed tracks
- Tau-jet & MET cleaning cuts to reject candidates caused by out-of-time cosmic events or known noise effects in the calorimeters

- •The selection results in 78 events in data
- From Monte Carlo, the expected number of signal that pass the selection is 55.3±1.4
- The background from other W and Z decays is 11.8±0.4 events

Anna Kaczmarska

W→T_{had}V

Background estimation

W→T_{had}V

QCD Background: not enough statistics and large cross section uncertainties \rightarrow data-driven method

Observation: W->t(had) nu

Anna Kaczmarska

26.05.2011

W→T_{had}V

Top-anti top final states with taus

- Interesting as it can open a window to physics beyond the Standard Model
- In the SM, the top quark decays ~100% of the time into a W boson and a b-quark
- The W->tau nu BR has been measured with a high precision, and it is in a very good agreement with the SM expectations. The best measurement at the Tevatron of $\sigma(t\bar{t}) \times BR(t \rightarrow \tau v + b)$ has an uncertainty of 25%.
- If a charged Higgs exists, as required by the MSSM, and its mass is lower than the top quark mass minus the b quark mass, the top quark can have a substantial BR to H⁺ b
 For large values of tanβ charged Higgs decays mainly to tau and can increase the top quark branching ratio signicantly.
- The much larger cross section for tt production at the LHC provides us with an opportunity to measure that BR with a higher precision, and thus increase the sensitivity to H⁺ or other processes that enhance this branching ratio.

Summary

Observation of hadronically and leptonically decaying tau leptons in ATLAS established \blacktriangleright Clear signal of W \rightarrow TV and Z \rightarrow TT observed In good agreement with Standard Model expectation Cross section measurements under approval Interesting studies for taus in top – anti top events with 2011 data ongoing Looking forward to results with more data in tau decay channels they should come soon - Stay Tuned!

Anna Kaczmarska

26.05.2011

Main sources of fake taus

Object Preselection and Selection

Electron preselection used for overlap removal and dilepton veto

 $p_{\rm T} > 10 \ {
m GeV}$ $|\eta| < 2.47$, but excluding $1.37 < |\eta| < 1.52$ not in bad OQmaps region

electron author 1 or 3

"robust medium" electron

Electron selection

 $p_{\rm T} > 15 \; GeV$

"robuster tight" electron

 τ Candidate Preselection

 $p_{\rm T} > 15 \text{ GeV}$ $|\eta| < 2.5$

"loose" simple cuts τ -ID

 τ Candidate Selection

author 1 or 3

passes e and μ vetos

"tight" simple cuts τ -ID

More information on particle identification: Electron: arXiv:1010.2130 Muon: ATLAS-CONF-2010-036 Tau: ATLAS-CONF-2010-086

Anna Kaczmarska

26.05.2011

Object Preselection and Selection

Muon preselection used for overlap removal and dilepton veto	
$p_{\rm T} > 10~{ m GeV}$	•
$ \eta < 2.4$	
"isCombinedMuon"	
$ z_0 < 10 \text{ mm}$	
Muon selection	
$p_{\rm T} > 15 { m ~GeV}$	
$p_{\mathrm{T}}(mu_{Track}^{MS}) < 50 \text{ GeV}$: $(p_{\mathrm{T}}(mu_{Track}^{MS}) - p_{\mathrm{T}}(mu_{Track}^{ID}))/p_{\mathrm{T}}(mu_{Track}^{ID}) > -0.4$ nPixHits> 0	
nSCTHits> 5	
$ \eta < 1.9$: nTRT Outliers / (nTRT Hits + nTRT Outliers) < 0.9	
$ \eta \ge 1.9 \& \text{nTRT Hits} > 5$: nTRT Outliers / (nTRT Hits + nTRT Outliers) < 0.9	
"match" $\chi^2 < 150$	
	/

Missing transverse energy: No cut on it in this analysis, but enters calculation of other quantities used for the suppression of W+jets backgrounds.

Anna Kaczmarska

Cut flow tables

Muon Channel

	data	$Z \to \tau \tau$	Multijets	$W \rightarrow \mu \nu$	$W \to \tau \nu$	$Z \rightarrow \mu \mu$	tī
object selection	574	59(2)	78(3)	268(4)	25(1)	83.8(9)	25.9(3)
dilepton veto	522	58(2)	78(3)	267(4)	25(1)	33.7(6)	20.7(3)
W suppression cuts	173	52(2)	58(2)	33(1)	11.2(8)	12.7(3)	5.2(1)
$m_{\rm vis} = 35 - 75 {\rm ~GeV}$	91	46(2)	32(2)	6.3(6)	3.1(4)	4.2(2)	0.89(6)
$N_{\text{trk}}(\tau_{\text{h}}) = 1 \text{ or } 3, Q(\tau_{\text{h}}) = 1$	55	40(2)	10(1)	2.1(4)	0.9(2)	2.7(2)	0.37(4)
opposite sign	51	40(2)	5.2(7)	1.2(3)	0.8(2)	2.4(2)	0.28(3)

Electron Channel

	data	$Z \rightarrow \tau \tau$	Multijet	$W \rightarrow ev$	$W \rightarrow \tau \nu$	$Z \rightarrow ee$	tī
object selection	524	38(2)	109(3)	243(4)	18(1)	82.9(9)	21.6(3)
dilepton veto	485	37(2)	108(3)	243(4)	18(1)	48.9(7)	17.4(3)
W suppression cuts	163	33(2)	77(2)	34(2)	7.9(7)	26.5(5)	4.2(1)
$m_{\rm vis} = 35 - 75 {\rm GeV}$	76	28(2)	40(2)	7.3(7)	1.7(3)	5.4(2)	0.72(5)
$N_{\text{trk}}(\tau_{\text{h}}) = 1 \text{ or } 3, Q(\tau_{\text{h}}) = 1$	33	25(2)	12.8(9)	2.9(5)	0.5(2)	2.6(2)	0.25(3)
opposite sign	29	25(2)	6.8(6)	2.3(4)	0.5(2)	1.9(1)	0.20(3)

Systematic Uncertainties – muon channel

		0.000000		20 1 10	
Systematic	Uncertainty	Multijets	W+jets	Z & 1ī	$Z \to \tau \tau$
μ efficiency	2.7%	±0.03*	-	±0.07	±1.1
μ trigger efficiency	2.0%	±0.01*	-	±0.05	±0.8
μ isolation	1.6%	±0.01*	-	±0.04	±0. 7
Jet τ fake rate	50%	±0.17*	-	±1.34	-
Energy scale	$13\% (W \rightarrow \mu v) / 16\% (W \rightarrow \tau v)$	±0.26*	±0.28	±0.40	±2.4
	6% (signal) / 13% (Z) / 21% (tī)				
Pile-up re-weighting	0.5% (signal) / 0.58% (tī)	±0.01*	-	±0.10	±0.2
	3.9% (Z)				
MC underlying event model	7%	±0.04*	-	-	±2.8
MC showering model	6%	±0.04*	-	-	±2.4
Luminosity	11%	±0.07*	-	±0.30	±4.4
Theoretical cross-section	5% (Z)	±0.03*	-	±0.12	±2.0
	6% (tī)	±0.01*	-	±0.02	-
W rescaling factor	8.8% in A, B	±0.04*	±0.17	-	-
_	2.1% in C, D	-	-	-	-
Multijet est. (bkg subtraction)	-	±0.34	-	-	-
Multijet est. (method systematics)	-	±0.56	-	-	-
Total systematics	-	±0.66	±0.33	±1.44	±6. 7

*: Taken into account for MC background subtraction in CRs

Systematic Uncertainties – electron channel

Systematic	Uncertainty	Multijets	W+jets	Z & tī	$Z \rightarrow \tau \tau$
e efficiency	η, p_T dependent	±0.1*	-	±0.25	±4.7
e trigger efficiency	1%	±0.01*	-	±0.02	±0.2
e isolation	p_T dependent	±0.15*	-	±0.17	±3.7
$e \tau$ fake rate	33.5%	±0.19*	-	±0.65	-
Jet $ au$ fake rate	50%	±0.29*	-	±1.07	-
Energy scale	$13\% (W \rightarrow ev) / 12\% (W \rightarrow \tau v)$	±0.28*	±0.36	±0.28	±1.7
	7% (signal) / 13% (Z) /15% (tt)				
Pile-up re-weighting	0.5% (signal) / 0.58% (tt)	±0.01*	-	±0.03	±0.1
	1.3% (Z)	-	-	-	-
MC underlying event model	8%	±0.03*	-	-	±2.0
MC showering model	13%	±0.05*	-	-	±3.2
Luminosity	11%	±0.07*	-	±0.24	±2.7
Theoretical cross-section	5% (Z)	±0.03*	-	±0.10	±1.2
	6% (tī)	±0.01*	-	±0.01	-
W rescaling factor	8.7% in A, B	±0.04*	±0.24	-	-
	3.1% in C, D	-	-	-	-
Multijet est. (bkg subtraction)	-	±0.47	-	-	-
Multijet est. (method systematics)	-	±0.44	-	-	-
Total systematics	-	±0.65	±0.43	±1.35	±7.9

*: Taken into account for MC background subtraction in CRs

Anna Kaczmarska

QCD Bkg Estimation - Systematic Uncertainties $Z \rightarrow T_{lep}T_{had}$

- The systematic uncertainty due to the stability of the isolation ratio with respect to relaxed cuts in region C and D
 - as a check, the multijet background was also estimated with all cuts applied for region C and D, at which point the statistical error on the estimate is quite large and the result is consistent with the default estimation.
- Assumption that isolation and T identification are uncorrelated was tested by varying the non isolated region as well as the T identification inversion. Both variations give a similar background estimate for region A.
- Several additional checks of the method were performed by comparing the shapes of various distributions between the regions and by checking the stability of the result while changing a number of conditions (such as the T candidate pT or the number of associated tracks). In all cases the method was found to be robust, within statistical errors.
 - The shapes of the isolation distributions in region B (tight T candidate, inverted isolation) are similar to those in D (loose not tight T candidate, inverted isolation)
- For the alternative multijet background estimation method the assumption that ROS/S S is independent of the isolation variables has been tested

Systematics

Systematic	Uncertainty	$Z \rightarrow \tau \tau$	$Z \rightarrow \ell \ell$	W	tŦ	Multijet
a anarov scala	206	±22	+0.05	 +0.18	+0.01	± 0.11
e chergy scale	370	±2.2	±0.05	±0.10	±0.01	±0.11
e energy resolution	η dependent	±0.69	±0.06	± 0.00	±0.02	±0.01
e reconstruction efficiency	$E_{\rm T}, \eta$ dependent	±4.0	±0.11	±0.10	±0.00	±0.12
e isolation efficiency	$E_{\rm T}$ dependent	±11	±0.26	±0.17	±0.01	±0.41
$\mu p_{\rm T}$ scale	η dependent	±0.0	±0.00	± 0.00	±0.00	±0.01
$\mu p_{\rm T}$ resolution	η dependent	±0.7	±0.06	± 0.00	±0.00	±0.00
μ reconstruction efficiency	η dependent	±0.7	±0.00	± 0.00	±0.00	± 0.04
μ isolation efficiency	$p_{\rm T}$ dependent	±2.0	±0.05	±0.03	±0.00	±0.08
trigger efficiency	1.6%	±1.1	±0.03	±0.02	±0.00	±0.04
pile-up reweight	Toy Monte Carlo	±3.0	±0.08	±0.05	±0.00	±0.13
underlying event	3.1%	±2.1	±0.06	±0.03	± 0.00	± 0.08
theoretical cross section	$5\%(Z,W), 6\%(t\bar{t})$	±3.5	±0.08	±0.04	±0.00	±0.08
luminosity	11%	±7.6	±0.20	±0.13	±0.01	±0.30
Total Systematic		±15.1	± 0.39	±0.31	±0.02	±0.57

- Systematics estimated using MC
- Feed through systematic uncertainties into multijet BG estimate
- Systematics due to QCD estimation method and fake rate small

Z→ττ→eµ+4v Observation

Matthew Beckingham (Uni Freiburg)

Z→T_eT_{mu}

 $W \rightarrow T_{had} v \ process$

				XX Z				A = I M	
		Data	$W ightarrow au_{ m h} u_{ au}$	$W ightarrow e V_e$	$W ightarrow \mu u_{\mu}$	$W o au_\ell u_ au$	$Z \rightarrow ee$	$Z ightarrow \mu \mu$	Z ightarrow au au
	Trigger	986439	954.5 ± 5.2	3560.7 ± 3.4	521.4 ± 1.6	296.5 ± 2.8	75.3 ± 0.2	59.7 ± 0.2	115.1 ± 0.7
QC	D jets rejection	415951	728.3 ± 4.7	2735.3 ± 3.5	400.7 ± 1.5	229.4 ± 2.6	24.5 ± 0.1	45.1 ± 0.1	71.4 ± 0.6
$E_{\mathrm{T}}^{\mathrm{n}}$	$h^{\rm miss} > 30 { m ~GeV}$	29686	411.5 ± 3.8	1828.3 ± 3.3	317.1 ± 1.3	121.9 ± 1.9	1.13 ± 0.03	34.4 ± 0.1	35.4 ± 0.4
	au selection	2408	$118.0{\pm}2.1$	1482.0 ± 3.1	26.6 ± 0.4	$34.4{\pm}1.0$	$0.59{\pm}0.02$	$3.24 {\pm} 0.04$	11.9 ± 0.3
Le	pton rejection	685	$94.8 {\pm} 1.9$	6.7 ± 0.2	4.9 ± 0.2	2.3 ± 0.3	< 0.005	$0.11 {\pm} 0.01$	4.2 ± 0.2
	$S_{E_{\mathrm{T}}^{\mathrm{miss}}} > 6$	78	55.3 ± 1.4	4.2 ± 0.2	3.7 ± 0.1	1.8 ± 0.2		0.08 ± 0.01	2.0 ± 0.1

Anna Kaczmarska

26.05.2011

Sources of Systematic Uncertainties

- QCD background estimation with ABCD method
 - Dominated by correlations between MET significance and tau-ID (28%) (from variation od SETmiss cut)
 - Correction for the signal and EW background contaminations in the control regions (6%)
- EW and Signal:
 - Monte Carlo Modeling
 - Comparison between mc09 and DW tuning
 - Lepton vetoes
 - Tag-and-probe methods for electrons and muons (Z \rightarrow e e / Z \rightarrow μ μ)
 - Pileup
 - Due to event weight to match observed vertex multiplicity distribution in data (<1%)
 - Trigger
 - Found to be negligible (offline selection cut within the trigger efficiency plateau)
 - Energy Scale
 - Adopted procedure from W → e υ CONF results
 - http://indico.cern.ch/getFile.py/access?contribId=24&sessionId=10&resId=0&materialId=slides&confId=91219
 - ATL-PHYS-COM-PHYS-2010-703 http://cdsweb.cern.ch/record/1288274

Approval Meeting - 11/05/2010

G. Nunes Hanninger (Bonn University)

Systematic Uncertainties

	Signal	EW background	QCD background
Central values [events]	55.3	11.8	11.1
Statistical uncertainty [events]	± 1.4	± 0.4	± 2.3
Systematic uncertainties			
Theoretical cross section	$\pm 5\%$	$\pm 5\%$	
Luminosity	$\pm 11\%$	$\pm 11\%$	7772
Energy scale	$\pm 21\%$	$\pm 14\%$	<u>1000</u>
Lepton veto		$\pm 19\%$)
Pile-up	±1%	$\pm 0.2\%$	<u>(7.7.5)</u>
Monte Carlo model	$\pm 16\%$	$\pm 17\%$	<u></u>)
QCD background estimation		,	$\pm 29\%$
Total systematic uncertainty [events]	± 16.1	± 3.7	± 3.2