

Séminaire du Laboratoire de Physique Nucléaire et des Hautes Energies Jeudi 28 février 2008

Une mesure quantique idéale de la lumière

Julien BERNU

LABORATOIRE KASTLER BROSSEL

Ecole Normale Supérieure (Paris)

Japan Science and Technology Agency

La mesure en mécanique quantique

L'aspect le plus intriguant de la mécanique quantique.

- > 3 étranges postulats :
 - « No one really understands quantum mechanics. »
 - Discontinuité quantique

Une mesure ne peut pas donner n'importe quel résultat.

- → seulement les valeurs propres de l'observable mesurée.
- Principe de superposition et hasard quantique
 On ne peut prédire que des probabilités.

→ « God is playing dice! »

Répétabilité

Deux mesures infiniment rapprochées doivent donner le même résultat.

→ la fonction d'onde est projetée sur un état propre.

Mesures idéales

- La mesure ne perturbe pas le système plus que la projection imposée par le postulat fondamental.
 - → La plupart des mesures quantiques sont loin d'être idéales...

- Lorsqu'en plus l'observable reste inchangée par l'évolution libre du système, la mesure est appelée « mesure Quantique Non Destructive »
 - → De nombreuses observables ne sont pas QND...
 - Des mesures QND répétées (même espacées dans le temps) donnent le même résultat.

Mesures QND et sauts quantiques

- Sous l'effet d'une perturbation extérieure, le système peut soudainement et aléatoirement sauter d'un état propre à l'autre de l'observable mesurée.
 - → Ces « sauts quantiques » révèlent la présence de cette perturbation.
 - Proposal pour la détection des ondes gravitationnelles (Braginsky années 70)

Première observation des sauts quantiques : un ion piégé.

Observer les sauts quantiques de la lumière ?

- Il faut un photo-détecteur « transparent » :
 - → Les photo-détecteurs habituels (PM, photodiodes, yeux) absorbent les photons et convertissent leur énergie en signal électrique ou chimique.
 - On ne peut donc pas observer deux fois le même photon.

La détection détruit l'état du champ.

(Mais cette destruction n'est pas imposée par la théorie.)

• Réalisé dans le domaine optique :

(Grangier et al, Nature, 396, 537)

- La très faible non-linéarité :
 - → résolution à l'échelle du photon impossible
- □ faisceaux propageants :
 - → répétition difficile

→ inapproprié pour l'observation de sauts quantiques

Une mesure répétée de photon requiert :

Une « boîte à photons »

$$T_{cav} \gg T_{meas}$$

• Une sonde ultra-sensible et transparente

 $(1 \text{ photon} = 2 \cdot 10^{-4} \text{ eV})$

Des atomes utilisés comme de petites horloges atomiques dont l'heure est affectée par les photons piégés.

Plan

• Les outils expérimentaux

le dispositif expérimental
la boîte à photons

les atomes de Rydberg circulaires

Voir et revoir le même photon...
 une sonde transparente

 film de la naissance, de la vie et de la mort d'un photon

- Observer plus qu'un photon
 tester les postulats fondamentaux de la mesure quantique
- Une source d'états non-classiques
 observer la décohérence

1. Les outils expérimentaux

Interaction atome - champ

régime de couplage fort »

 $T_0 \ll T_{at}, T_{cav}$

Des atomes presque parfaits

Trois bonnes propriétés :

- □ grand dipôle électrique (électron loin du noyau)
 - → très couplé au champ
- □ très stables (une seule voie de désexcitation)
 - \rightarrow long temps de vie T_{at}=30ms

Transition micro-onde -> cavités supraconductrices

Le piège à photon

• Une cavité de très grande finesse

 Des miroirs supraconducteurs (Niobium)
 Très bonne réflectivité (énergie d'un photon < gap supra)

- Les états de Rydberg circulaires ne sont stables qu'en présence d'un champ électrique statique directeur... et sont sensibles aux inhomogénéités de champ !
 - → configuration Fabry-Perot ouverte
 - → difficile de conserver les photons dans le mode de la cavité...
- □ Cavité précédente : $T_{cav} = 100 \ \mu s$ → couplage fort ⊕ → saut quantiques ⊗
 - → nouvelle génération

La nouvelle génération de cavités

 Couche de 12 µm de Niobium (Pulvérisation cathodique) CEA, Saclay

[E. Jacques, B. Visentin, P. Bosland]

S. Kuhr et al, APL, 90, 164101

- Substrats en cuivre Usinage diamant :
 - ➔ géométrie presque parfaite

précision de surface 300 nm ptv rugosité : 10 nm (qualité optique) surface toroïdale → mode unique

La meilleure finesse au monde...

Temps de vie : $T_{cav} = 0.13 \text{ s}$ Facteur de qualité : $Q = \omega T_{cav} = 4.2 \cdot 10^{10}$
(comparable aux très bonnes cavités optiques)Finesse : $F = ISL / \Delta v = (c / 2d) \cdot 2\pi T_{cav} = 4.6 \cdot 10^9$
(plusieurs ordres de grandeur supérieure aux meilleures
cavités optiques)

Un photon rebondit en moyenne 1.5 milliards de fois sur les miroirs avant d'être perdu !

Il parcourt en moyenne 40 000 km (le tour de la Terre) !

Ceci correspond à une atténuation de 10⁻⁴ dB / km. (plusieurs ordres de grandeur en dessous des fibres optiques)

Dispositif expérimental (schéma de principe)

2. Voir et revoir le même photon...

Interaction dispersive

→ Dispersive interaction :

Les atomes sont totalement transparents. (absorption < 10⁻⁴ à 10⁻⁶)

→ Déplacement lumineux :

Les atomes sont sensibles à la présence de photons.

Sphère de Bloch et spin atomique

 $\times e^{-i\frac{E_e t}{\hbar}} \qquad \times e^{-i\frac{E_g t}{\hbar}}$

$$|\psi\rangle = \cos\frac{\theta}{2}|e\rangle + e^{i\varphi}\sin\frac{\theta}{2}|g\rangle$$

Oscillations de Rabi (classiques) : \rightarrow modifient θ Evolution libre : $\dot{\phi} = \omega_{at}$ Référentiel tournant : $\dot{\phi} = \omega_{at} - \omega_{R} = \delta_{R}$

Principe de notre mesure QND

 (\mathbf{p}) 1. Déclenchement de l'horloge $|n\rangle$ 2. Précession du spin le π atomique dans la cavité |g> Ζ Z $|6\rangle$ $|5\rangle$ $|4\rangle$ $|n=0\rangle$ $\Delta \omega_{at}$ y 3 Х Х $|2\rangle$

Chaque atome se comporte comme une horloge dont l'aiguille indique le nombre de photons.

Déphasage par photon

Principe de notre mesure QND

 (\mathbf{p}) 1. Déclenchement de l'horloge $|n\rangle$ 2. Précession du spin $|e\rangle$ Détection π atomique dans la cavité σ_{ϕ} ? $|g\rangle$ 3. Mesure de la direction 3 du spin atomique Ζ $\sigma_{_{arphi}}$ 5 $|4\rangle$ $|n=0\rangle$ $\Delta \omega_{at}$ y 3 Χ Х

On ne peut mesurer un spin que sur une seule direction. 1 atome = 1 bit d'information → généralement insuffisant pour mesurer n.

Une mesure de Sy détermine parfaitement n=0 ou n=1.

Détection de e → 1 photon dans la cavité g → 0 photon dans la cavité

Gleyzes S. et al. Nature 446, 297-300 (2007).

3. Observer plus qu'un photon ?

Détection d'un |n> plus élevé

L'interaction prépare un état intriqué :

$$|\Psi\rangle = |+_{y}\rangle \otimes \sum_{n} C_{n} |n\rangle \implies |\Psi\rangle = \sum_{n} C_{n} |+_{n\Phi_{0}}\rangle \otimes |n\rangle$$

1 atome = 1 mesure = 1 bit d'information → Plus d'atomes !

On « écrit » le nombre de photons sur un ensemble mésoscopique d'atomes.

« décoder » le nombre de photons

$$\left|\Psi\right\rangle = \sum_{n} C_{n} \left|+_{n \Phi_{0}}\right\rangle^{N} \otimes \left|n\right\rangle$$

On a maintenant N copies du même état $|+_{n\Phi_0}\rangle$.

Mesure du spin atomique par « tomographie » :

Si N est assez grand, on doit pouvoir distinguer les différents nombres de photons.

Mesure du spin atomique

Méthode : 1. Injection d'un champ cohérent contenant quelques photons.
2. Détection de N=110 atomes consécutifs : T_{meas}=26 ms

Mesure du spin atomique

- Méthode : 1. Injection d'un champ cohérent contenant quelques photons.
 - 2. Détection de N=110 atomes consécutifs : T_{meas}=26 ms
 - 3. On recommence

Mesure du spin atomique

- Méthode : 1. Injection d'un champ cohérent contenant quelques photons.
 - 2. Détection de N=110 atomes consécutifs : T_{meas}=26 ms
 - 3. On recommence

Acquisition progressive d'information

• Un autre point de vue de cette expérience :

Les atomes sont en fait détectés un par un.

→ On considère les probabilités P(n) d'avoir n photons et on décrit

l'effet de l'information extraite atome par atome sur les P(n) :

Projection progressive de la fonction d'onde

Champ initial : état cohérent (source classique)

Projection progressive de l'état cohérent sur l'état de Fock |n=5>.

Distribution initiale uniforme :
→ Ce résultat ne dépend d'aucune hypothèse a priori.

C. Guerlin . et al. Nature August 23 (2007).

Une autre réalisation

Projection sur |n=7>

Nombre de photons final aléatoire

La statistique des résultats doit refléter les poids des différents |n> dans l'état initial (postulat de la mesure).

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

C. Guerlin . et al. Nature August 23 (2007).

Statistique du nombre de photons

Photon number <n>

Très bon accord avec la loi de Poisson attendue : $\langle n \rangle = |\alpha|^2 = 3.4 \pm 0.008$

Notre mesure QND confirme les trois postulats de la mesure quantique ! (valeurs discrètes pour les résultats, statistique des résultats et projection de la fonction d'onde) C. Guerlin . *et al. Natur*e August 23 (2007).

Répétabilité : une trajectoire complète

On mesure l'évolution de la direction du spin atomique avec une fenêtre glissante de N=110 atomes : (1 à 110), (2 à 111), (3 à 112),..., (k+1 à k+110),...

5- Observer la décohérence...

Une trajectoire étrange...

Production de chats de Schrödinger

Caractériser les chats de Schrödinger

La fonction de Wigner :

- → une description complète du système
- → équivalente à la matrice densité : $W(\alpha) \leftrightarrow \hat{\rho}$

Première mesure

Etat cohérent initial contenant environ 2.5 photonsTaille du chat : environ 10 photons !

A suivre...

• Filmer la décohérence d'un chat de Schrödinger

Conclusion

Une nouvelle génération de cavités : → T_{cav}=0.13s → F=4.6 10⁹

 Mesure QND du nombre de photons :

➔ Premières observations des sauts quantiques de la lumière

→ Vérifications des postulats fondamentaux de la mesure (valeurs discrètes, projection de la fonction d'onde et répétabilité, statistique des résultats)

- Production d'états hautement non-classiques:
 - → Etats de Fock jusqu'à |n=7>
 - → Chats de Schrödinger

Le groupe

L'équipe actuelle

J.B. Samuel Deléglise Clément Sayrin Igor Dotsenko

Les grands chefs : Michel Brune Jean-Michel Raimond Serge Haroche

Ancien membres :

Sébastien Gleyzes (post-doc Westbrook) Christine Guerlin (post-doc Esslinger) Stefan Kuhr (Mainz) Ulrich Hoff (diploma, Copenhagen) Collaboration: CEA Saclay (DAPNIA): P. Bosland, B. Visentin, E. Jacques.

